Spaces:
Runtime error
Runtime error
import gradio as gr | |
import yolov5 | |
import os | |
import gradio as gr | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
import torch | |
import numpy as np | |
from PIL import Image | |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') | |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") | |
model1 = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
def process_image(image): | |
# prepare image for the model | |
encoding = feature_extractor(image, return_tensors="pt") | |
# forward pass | |
with torch.no_grad(): | |
outputs = model1(**encoding) | |
predicted_depth = outputs.predicted_depth | |
# interpolate to original size | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=image.size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
output = prediction.cpu().numpy() | |
formatted = (output * 255 / np.max(output)).astype('uint8') | |
img = Image.fromarray(formatted) | |
return img | |
# ....................................................... | |
model = yolov5.load('./best.pt', device="cpu") | |
def predict(image): | |
results = model([image], size=640) | |
results1= process_image(image) | |
width, height = 640, 640 | |
results_image = Image.fromarray(results.render()[0]).resize((width, height)) | |
results1_resized = results1.resize((width, height)) | |
# return results.render()[0], results1 | |
return results_image, results1_resized | |
title = "Detecting objects for elderly and blind" | |
description = """ | |
Try the examples at bottom to get started. | |
""" | |
examples = [ | |
[os.path.join(os.path.abspath(''), './Optional1.jpeg')], | |
[os.path.join(os.path.abspath(''), './option2.jpeg')], | |
[os.path.join(os.path.abspath(''), './option3.jpeg')], | |
[os.path.join(os.path.abspath(''), './option4.jpeg')], | |
] | |
inputs = gr.Image(type="pil", shape=(640, 640), | |
label="Upload your image for detection") | |
outputs = [ | |
gr.Image(type="pil", shape=(640, 640), label="Object Detections"), | |
gr.Image(type="pil", shape=(640, 640), label="Processed Image") | |
] | |
interface = gr.Interface( | |
fn=predict, | |
inputs=inputs, | |
outputs=outputs, | |
examples= examples, | |
title=title, | |
description=description, | |
cache_examples=True, | |
theme='huggingface' | |
) | |
interface.launch(debug=True, enable_queue=True) | |