Manasee27's picture
Update app.py
b9e6f35
import gradio as gr
import yolov5
import os
import gradio as gr
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model1 = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
def process_image(image):
# prepare image for the model
encoding = feature_extractor(image, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = model1(**encoding)
predicted_depth = outputs.predicted_depth
# interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu().numpy()
formatted = (output * 255 / np.max(output)).astype('uint8')
img = Image.fromarray(formatted)
return img
# .......................................................
model = yolov5.load('./best.pt', device="cpu")
def predict(image):
results = model([image], size=640)
results1= process_image(image)
width, height = 640, 640
results_image = Image.fromarray(results.render()[0]).resize((width, height))
results1_resized = results1.resize((width, height))
# return results.render()[0], results1
return results_image, results1_resized
title = "Detecting objects for elderly and blind"
description = """
Try the examples at bottom to get started.
"""
examples = [
[os.path.join(os.path.abspath(''), './Optional1.jpeg')],
[os.path.join(os.path.abspath(''), './option2.jpeg')],
[os.path.join(os.path.abspath(''), './option3.jpeg')],
[os.path.join(os.path.abspath(''), './option4.jpeg')],
]
inputs = gr.Image(type="pil", shape=(640, 640),
label="Upload your image for detection")
outputs = [
gr.Image(type="pil", shape=(640, 640), label="Object Detections"),
gr.Image(type="pil", shape=(640, 640), label="Processed Image")
]
interface = gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
examples= examples,
title=title,
description=description,
cache_examples=True,
theme='huggingface'
)
interface.launch(debug=True, enable_queue=True)