Spaces:
Sleeping
Sleeping
Manbearpig01
commited on
Commit
•
9ac0ba8
1
Parent(s):
d63404f
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Importing required Libraries
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import os, pickle
|
6 |
+
from sklearn.tree import DecisionTreeRegressor
|
7 |
+
from sklearn import preprocessing
|
8 |
+
|
9 |
+
# Setting up page configuration and directory path
|
10 |
+
st.set_page_config(page_title="Sales Forecasting App", page_icon="🐞", layout="centered")
|
11 |
+
DIRPATH = os.path.dirname(os.path.realpath(__file__))
|
12 |
+
|
13 |
+
# Setting background image
|
14 |
+
import base64
|
15 |
+
def add_bg_from_local(image_file):
|
16 |
+
with open(image_file, "rb") as image_file:
|
17 |
+
encoded_string = base64.b64encode(image_file.read())
|
18 |
+
st.markdown(
|
19 |
+
f"""
|
20 |
+
<style>
|
21 |
+
.stApp {{
|
22 |
+
background-image: url(data:image/{"jpg"};base64,{encoded_string.decode()});
|
23 |
+
background-size: cover
|
24 |
+
}}
|
25 |
+
</style>
|
26 |
+
""",
|
27 |
+
unsafe_allow_html=True
|
28 |
+
)
|
29 |
+
add_bg_from_local('background.jpg')
|
30 |
+
|
31 |
+
# Setting up logo
|
32 |
+
left1, left2, mid,right1, right2 = st.columns(5)
|
33 |
+
with mid:
|
34 |
+
st.image("logo.jpg", use_column_width=True)
|
35 |
+
|
36 |
+
# Setting up Sidebar
|
37 |
+
social_acc = ['Data Field Description', 'EDA', 'About App']
|
38 |
+
social_acc_nav = st.sidebar.radio('**INFORMATION SECTION**', social_acc)
|
39 |
+
|
40 |
+
if social_acc_nav == 'Data Field Description':
|
41 |
+
st.sidebar.markdown("<h2 style='text-align: center;'> Data Field Description </h2> ", unsafe_allow_html=True)
|
42 |
+
st.sidebar.markdown("**Date:** The date you want to predict sales for")
|
43 |
+
st.sidebar.markdown("**Family:** identifies the type of product sold")
|
44 |
+
st.sidebar.markdown("**Onpromotion:** gives the total number of items in a product family that are being promoted at a store at a given date")
|
45 |
+
st.sidebar.markdown("**Store Number:** identifies the store at which the products are sold")
|
46 |
+
st.sidebar.markdown("**Holiday Locale:** provide information about the locale where holiday is celebrated")
|
47 |
+
|
48 |
+
elif social_acc_nav == 'EDA':
|
49 |
+
st.sidebar.markdown("<h2 style='text-align: center;'> Exploratory Data Analysis </h2> ", unsafe_allow_html=True)
|
50 |
+
st.sidebar.markdown('''---''')
|
51 |
+
st.sidebar.markdown('''The exploratory data analysis of this project can be find in a Jupyter notebook from the linl below''')
|
52 |
+
st.sidebar.markdown("[Open Notebook](https://github.com/Kyei-frank/Regression-Project-Store-Sales--Time-Series-Forecasting/blob/main/project_workflow.ipynb)")
|
53 |
+
|
54 |
+
elif social_acc_nav == 'About App':
|
55 |
+
st.sidebar.markdown("<h2 style='text-align: center;'> Sales Forecasting App </h2> ", unsafe_allow_html=True)
|
56 |
+
st.sidebar.markdown('''---''')
|
57 |
+
st.sidebar.markdown("This App predicts the sales for product families sold at Favorita stores using regression model.")
|
58 |
+
st.sidebar.markdown("")
|
59 |
+
st.sidebar.markdown("[ Visit Github Repository for more information](https://github.com/Kyei-frank/Regression-Project-Store-Sales--Time-Series-Forecasting)")
|
60 |
+
|
61 |
+
# Loading Machine Learning Objects
|
62 |
+
@st.cache()
|
63 |
+
def load_saved_objects(file_path = 'ML_items'):
|
64 |
+
# Function to load saved objects
|
65 |
+
with open('ML_items', 'rb') as file:
|
66 |
+
loaded_object = pickle.load(file)
|
67 |
+
|
68 |
+
return loaded_object
|
69 |
+
|
70 |
+
# Instantiating ML_items
|
71 |
+
Loaded_object = load_saved_objects(file_path = 'ML_items')
|
72 |
+
model, encoder, train_data, stores, holidays_event = Loaded_object['model'], Loaded_object['encoder'], Loaded_object['train_data'], Loaded_object['stores'], Loaded_object['holidays_event']
|
73 |
+
|
74 |
+
# Setting Function for extracting Calendar features
|
75 |
+
@st.cache()
|
76 |
+
def getDateFeatures(df, date):
|
77 |
+
df['date'] = pd.to_datetime(df['date'])
|
78 |
+
df['month'] = df.date.dt.month
|
79 |
+
df['day_of_month'] = df.date.dt.day
|
80 |
+
df['day_of_year'] = df.date.dt.dayofyear
|
81 |
+
df['week_of_year'] = df.date.dt.isocalendar().week
|
82 |
+
df['day_of_week'] = df.date.dt.dayofweek
|
83 |
+
df['year'] = df.date.dt.year
|
84 |
+
df['is_weekend']= np.where(df['day_of_week'] > 4, 1, 0)
|
85 |
+
df['is_month_start']= df.date.dt.is_month_start.astype(int)
|
86 |
+
df['is_month_end']= df.date.dt.is_month_end.astype(int)
|
87 |
+
df['quarter']= df.date.dt.quarter
|
88 |
+
df['is_quarter_start']= df.date.dt.is_quarter_start.astype(int)
|
89 |
+
df['is_quarter_end']= df.date.dt.is_quarter_end.astype(int)
|
90 |
+
df['is_year_start']= df.date.dt.is_year_start.astype(int)
|
91 |
+
|
92 |
+
return df
|
93 |
+
|
94 |
+
# Setting up variables for input data
|
95 |
+
@st.cache()
|
96 |
+
def setup(tmp_df_file):
|
97 |
+
"Setup the required elements like files, models, global variables, etc"
|
98 |
+
pd.DataFrame(
|
99 |
+
dict(
|
100 |
+
date=[],
|
101 |
+
store_nbr=[],
|
102 |
+
family=[],
|
103 |
+
onpromotion=[],
|
104 |
+
city=[],
|
105 |
+
state=[],
|
106 |
+
store_type=[],
|
107 |
+
cluster=[],
|
108 |
+
day_type=[],
|
109 |
+
locale=[],
|
110 |
+
locale_name=[],
|
111 |
+
)
|
112 |
+
).to_csv(tmp_df_file, index=False)
|
113 |
+
|
114 |
+
# Setting up a file to save our input data
|
115 |
+
tmp_df_file = os.path.join(DIRPATH, "tmp", "data.csv")
|
116 |
+
setup(tmp_df_file)
|
117 |
+
|
118 |
+
# setting Title for forms
|
119 |
+
st.markdown("<h2 style='text-align: center;'> Sales Prediction </h2> ", unsafe_allow_html=True)
|
120 |
+
st.markdown("<h7 style='text-align: center;'> Fill in the details below and click on SUBMIT button to make a prediction for a specific date and item </h7> ", unsafe_allow_html=True)
|
121 |
+
|
122 |
+
# Creating columns for for input data(forms)
|
123 |
+
left_col, mid_col, right_col = st.columns(3)
|
124 |
+
|
125 |
+
# Developing forms to collect input data
|
126 |
+
with st.form(key="information", clear_on_submit=True):
|
127 |
+
|
128 |
+
# Setting up input data for 1st column
|
129 |
+
left_col.markdown("**PRODUCT DATA**")
|
130 |
+
date = left_col.date_input("Prediction Date:")
|
131 |
+
family = left_col.selectbox("Item family:", options= list(train_data["family"].unique()))
|
132 |
+
onpromotion = left_col.selectbox("Onpromotion code:", options= set(train_data["onpromotion"].unique()))
|
133 |
+
store_nbr = left_col.selectbox("Store Number:", options= set(stores["store_nbr"].unique()))
|
134 |
+
|
135 |
+
# Setting up input data for 2nd column
|
136 |
+
mid_col.markdown("**STORE DATA**")
|
137 |
+
city = mid_col.selectbox("City:", options= set(stores["city"].unique()))
|
138 |
+
state = mid_col.selectbox("State:", options= list(stores["state"].unique()))
|
139 |
+
cluster = mid_col.selectbox("Store Cluster:", options= list(stores["cluster"].unique()))
|
140 |
+
store_type = mid_col.radio("Store Type:", options= set(stores["store_type"].unique()), horizontal = True)
|
141 |
+
|
142 |
+
# Setting up input data for 3rd column
|
143 |
+
right_col.markdown("**ADDITIONAL DATA**")
|
144 |
+
check= right_col.checkbox("Is it a Holiday or weekend?")
|
145 |
+
if check:
|
146 |
+
right_col.write('Fill the following information on Day Type')
|
147 |
+
day_type = right_col.selectbox("Holiday:", options= ('Holiday','Special Day:Transfered/Additional Holiday','No Work/Weekend'))
|
148 |
+
locale= right_col.selectbox("Holiday Locale:", options= list(holidays_event["locale"].unique()))
|
149 |
+
locale_name= right_col.selectbox("Locale Name:", options= list(holidays_event["locale_name"].unique()))
|
150 |
+
else:
|
151 |
+
day_type = 'Workday'
|
152 |
+
locale = 'National'
|
153 |
+
locale_name= 'Ecuador'
|
154 |
+
|
155 |
+
submitted = st.form_submit_button(label="Submit")
|
156 |
+
|
157 |
+
# Setting up background operations after submitting forms
|
158 |
+
if submitted:
|
159 |
+
# Saving input data as csv after submission
|
160 |
+
pd.read_csv(tmp_df_file).append(
|
161 |
+
dict(
|
162 |
+
date = date,
|
163 |
+
store_nbr = store_nbr,
|
164 |
+
family=family,
|
165 |
+
onpromotion= onpromotion,
|
166 |
+
city=city,
|
167 |
+
state=state,
|
168 |
+
store_type=store_type,
|
169 |
+
cluster=cluster,
|
170 |
+
day_type=day_type,
|
171 |
+
locale=locale,
|
172 |
+
locale_name=locale_name
|
173 |
+
),
|
174 |
+
ignore_index=True,
|
175 |
+
).to_csv(tmp_df_file, index=False)
|
176 |
+
st.balloons()
|
177 |
+
|
178 |
+
# Converting input data to a dataframe for prediction
|
179 |
+
df = pd.read_csv(tmp_df_file)
|
180 |
+
df= df.copy()
|
181 |
+
|
182 |
+
# Getting date Features
|
183 |
+
processed_data= getDateFeatures(df, 'date')
|
184 |
+
processed_data= processed_data.drop(columns=['date'])
|
185 |
+
|
186 |
+
# Encoding Categorical Variables
|
187 |
+
encoder = preprocessing.LabelEncoder()
|
188 |
+
cols = ['family', 'city', 'state', 'store_type', 'locale', 'locale_name', 'day_type']
|
189 |
+
for col in cols:
|
190 |
+
processed_data[col] = encoder.fit_transform(processed_data[col])
|
191 |
+
|
192 |
+
# Making Predictions
|
193 |
+
def predict(X, model):
|
194 |
+
results = model.predict(X)
|
195 |
+
return results
|
196 |
+
|
197 |
+
prediction = predict(X= processed_data, model= Loaded_object['model'])
|
198 |
+
df['Sales']= prediction
|
199 |
+
|
200 |
+
|
201 |
+
# Displaying prediction results
|
202 |
+
st.markdown('''---''')
|
203 |
+
st.markdown("<h4 style='text-align: center;'> Prediction Results </h4> ", unsafe_allow_html=True)
|
204 |
+
st.success(f"Predicted Sales: {prediction[-1]}")
|
205 |
+
st.markdown('''---''')
|
206 |
+
|
207 |
+
# Making expander to view all records
|
208 |
+
expander = st.expander("See all records")
|
209 |
+
with expander:
|
210 |
+
df = pd.read_csv(tmp_df_file)
|
211 |
+
df['Sales']= prediction
|
212 |
+
st.dataframe(df)
|