File size: 4,532 Bytes
9871891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb8331
 
 
9871891
5fb8331
9871891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb8331
 
 
9871891
 
 
 
 
 
 
5fb8331
 
 
 
 
 
 
78da2be
24e62e4
 
e6f84e4
 
24e62e4
e6f84e4
24e62e4
 
 
5fb8331
 
 
 
e80df4f
5fb8331
 
 
 
9871891
 
5fb8331
 
 
 
 
 
 
 
9871891
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# # Importing the requirements
# import warnings
# warnings.filterwarnings("ignore")

# import gradio as gr
# from src.video_model import describe_video


# # Video and text inputs for the interface
# video = gr.Video(label="Video")
# query = gr.Textbox(label="Question", placeholder="Enter your question here")

# # Output for the interface
# response = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True)

# # Examples for the interface
# examples = [
#     [
#         "videos/2016-01-01_0100_US_KNBC_Channel_4_News_1867.16-1871.38_now.mp4",
#         "Here are some frames of a video. Describe this video in detail."
#     ],
#     [
#         "videos/2016-01-01_0200_US_KNBC_Channel_4_News_1329.12-1333.29_tonight.mp4",
#         "Here are some frames of a video. Describe this video in detail."
#     ],
#     [   "videos/2016-01-01_0830_US_KNBC_Tonight_Show_with_Jimmy_Fallon_725.45-729.76_tonight.mp4", 
#         "Here are some frames of a video. Describe this video in detail."
#     ]
# ]

# # Title, description, and article for the interface
# title = "GSoC Super Raid Annotator"
# description = "Annotate Videos"
# article = "<p style='text-align: center'><a href='https://github.com/OpenBMB/MiniCPM-V' target='_blank'>Model GitHub Repo</a> | <a href='https://huggingface.co/openbmb/MiniCPM-V-2_6' target='_blank'>Model Page</a></p>"


# # Launch the interface
# interface = gr.Interface(
#     fn=describe_video,
#     inputs=[video, query],
#     outputs=response,
#     examples=examples,
#     title=title,
#     description=description,
#     article=article,
#     theme="Soft",
#     allow_flagging="never",
# )
# interface.launch(debug=False)

import warnings
warnings.filterwarnings("ignore")
import gradio as gr
from src.video_model import describe_video  # Assuming this function processes the video and query

def process_video_and_questions(video, query, sitting, hands, location, screen):
    additional_info = []
    if sitting:
        additional_info.append("Is the subject in the video standing or sitting?")
    if hands:
        additional_info.append("Is the subject holding any object in their hands, if so the hands are not free else they are free.?")
    if location:
        additional_info.append("Is the subject present indoors or outdoors?")
    if screen:
        additional_info.append("Is the subject interacting with a screen in the background by facing the screen?")
    
    final_query = query + " " + " ".join(additional_info)
    # Assuming your describe_video function handles the video processing
    response = describe_video(video, final_query) 
    return response

# Video and text inputs for the interface
video = gr.Video(label="Video")
query = gr.Textbox(label="Question", value="Here are some frames of a video. Describe this video in detail and answer the below questions.", placeholder="Enter your question here")

# Options as checkboxes
sitting = gr.Checkbox(label="Sitting/Standing")
hands = gr.Checkbox(label="Hands Free/Not Free")
location = gr.Checkbox(label="Indoors/Outdoors")
screen = gr.Checkbox(label="Screen Interaction")

# Output for the interface
response = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True)

# Examples for the interface
examples = [
    [
        "videos/2016-01-01_0100_US_KNBC_Channel_4_News_1867.16-1871.38_now.mp4",
        "Here are some frames of a video. Describe this video in detail."
    ],
    [
        "videos/2016-01-01_0200_US_KNBC_Channel_4_News_1329.12-1333.29_tonight.mp4",
        "Here are some frames of a video. Describe this video in detail."
    ],
    [   "videos/2016-01-01_0830_US_KNBC_Tonight_Show_with_Jimmy_Fallon_725.45-729.76_tonight.mp4", 
        "Here are some frames of a video. Describe this video in detail."
    ]
]

# Title, description, and article for the interface
title = "GSoC Super Raid Annotator"
description = "Annotate Videos"
article = "<p style='text-align: center'><a href='https://github.com/OpenBMB/MiniCPM-V' target='_blank'>Model GitHub Repo</a> | <a href='https://huggingface.co/openbmb/MiniCPM-V-2_6' target='_blank'>Model Page</a></p>"

# Launch the interface
interface = gr.Interface(
    fn=process_video_and_questions, # Updated function to handle the query construction
    inputs=[video, query, sitting, hands, location, screen], 
    outputs=response,
    examples=examples,
    title=title,
    description=description,
    article=article,
    theme="Soft",
    allow_flagging="never",
)
interface.launch(debug=False)