Spaces:
Runtime error
Runtime error
ManishThota
commited on
Update src/text_processor.py
Browse files- src/text_processor.py +36 -17
src/text_processor.py
CHANGED
@@ -1,12 +1,23 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
from pydantic import BaseModel
|
4 |
-
import
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
8 |
"microsoft/Phi-3-mini-4k-instruct",
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
)
|
11 |
|
12 |
# Pydantic class for output validation
|
@@ -16,11 +27,12 @@ class VideoAnalysis(BaseModel):
|
|
16 |
screen_interaction: int
|
17 |
standing: int
|
18 |
|
|
|
19 |
def process_description(description):
|
20 |
# Construct a prompt for your LLM based on the video description
|
21 |
prompt = f"""
|
22 |
You are a helpful AI assistant. Analyze the following video description and answer the questions with 0 for True and 1 for False:
|
23 |
-
|
24 |
Video Description: {description}
|
25 |
|
26 |
Questions:
|
@@ -28,18 +40,25 @@ def process_description(description):
|
|
28 |
- Are the subject's hands free?
|
29 |
- Is there screen interaction by the subject?
|
30 |
- Is the subject standing?
|
31 |
-
|
32 |
Provide your answers in JSON format like this:
|
33 |
{{"indoor": 0, "hands_free": 1, "screen_interaction": 0, "standing": 1}}
|
34 |
"""
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
# Extract the generated JSON text from the response
|
43 |
-
json_text = response.choices[0].message.content
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
from pydantic import BaseModel
|
4 |
+
import spaces
|
5 |
|
6 |
+
device = 'cuda'
|
7 |
+
|
8 |
+
# Load your LLM model and tokenizer
|
9 |
+
torch.random.manual_seed(0)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
"microsoft/Phi-3-mini-4k-instruct",
|
12 |
+
device_map=device,
|
13 |
+
torch_dtype="auto",
|
14 |
+
trust_remote_code=True,
|
15 |
+
)
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
17 |
+
pipe = pipeline(
|
18 |
+
"text-generation",
|
19 |
+
model=model,
|
20 |
+
tokenizer=tokenizer,
|
21 |
)
|
22 |
|
23 |
# Pydantic class for output validation
|
|
|
27 |
screen_interaction: int
|
28 |
standing: int
|
29 |
|
30 |
+
@spaces.GPU(duration=100)
|
31 |
def process_description(description):
|
32 |
# Construct a prompt for your LLM based on the video description
|
33 |
prompt = f"""
|
34 |
You are a helpful AI assistant. Analyze the following video description and answer the questions with 0 for True and 1 for False:
|
35 |
+
|
36 |
Video Description: {description}
|
37 |
|
38 |
Questions:
|
|
|
40 |
- Are the subject's hands free?
|
41 |
- Is there screen interaction by the subject?
|
42 |
- Is the subject standing?
|
43 |
+
|
44 |
Provide your answers in JSON format like this:
|
45 |
{{"indoor": 0, "hands_free": 1, "screen_interaction": 0, "standing": 1}}
|
46 |
"""
|
47 |
|
48 |
+
generation_args = {
|
49 |
+
"max_new_tokens": 100, # Adjust as needed
|
50 |
+
"return_full_text": False,
|
51 |
+
"temperature": 0.0,
|
52 |
+
"do_sample": False,
|
53 |
+
}
|
|
|
|
|
54 |
|
55 |
+
output = pipe(prompt, **generation_args)
|
56 |
+
json_text = output[0]['generated_text']
|
57 |
+
|
58 |
+
try:
|
59 |
+
# Attempt to parse and validate the JSON response
|
60 |
+
analysis_result = VideoAnalysis.model_validate_json(json_text)
|
61 |
+
return analysis_result.model_dump_json() # Return as valid JSON
|
62 |
+
except Exception as e:
|
63 |
+
print(f"Error processing LLM output: {e}")
|
64 |
+
return {"error": "Could not process the video description."}
|