import warnings warnings.filterwarnings("ignore") import gradio as gr import re from typing import Dict, List import os import gc import torch import pandas as pd from src.video_model import describe_video from src.utils import parse_string, parse_annotations # Function to save data to a CSV file using pandas def save_to_csv(observations: List[Dict], output_dir: str = "outputs") -> str: if not os.path.exists(output_dir): os.makedirs(output_dir) # Convert the list of dictionaries to a pandas DataFrame df = pd.DataFrame(observations) # Specify the CSV file path csv_file = os.path.join(output_dir, "video_observations.csv") # Save the DataFrame to a CSV file df.to_csv(csv_file, index=False) return csv_file # Function to process a single video and return the observation data def process_single_video(video_path, standing, hands, location, screen) -> Dict: video_name = os.path.basename(video_path) # Extract video name from the path query = "Describe this video in detail and answer the questions" additional_info = [] if standing: additional_info.append("Is the subject in the video standing or sitting?\n") if hands: additional_info.append("Is the subject holding any object in their hands?\n") if location: additional_info.append("Is the subject present indoors?\n") if screen: additional_info.append("Is the subject interacting with a screen in the background by facing the screen?\n") end_query = """Provide the results in tags, where 0 indicates False, 1 indicates True, follow these example below\n: indoors: 0 standing: 1 hands.free: 0 screen.interaction_yes: 0 """ final_query = query + " " + " ".join(additional_info) final_prompt = final_query + " " + end_query # Assuming your describe_video function handles the video processing response = describe_video(video_path, final_prompt) final_response = f"{video_name}" + " \n" + response # Parse the response to extract video name and annotations parsed_content = parse_string(final_response, ["video_name", "annotation"]) video_name = parsed_content['video_name'][0] if parsed_content['video_name'] else None annotations_dict = parse_annotations(parsed_content['annotation']) if parsed_content['annotation'] else {} # Return the observation as a dictionary return {'video_name': video_name, **annotations_dict} # Function to process all videos in a folder def process_multiple_videos(video_files: List[str], standing, hands, location, screen): all_observations = [] for video_path in video_files: observation = process_single_video(video_path, standing, hands, location, screen) if observation['video_name']: # Only add valid observations all_observations.append(observation) else: print("Error processing video:", video_path) # Log any errors # Clear GPU cache torch.cuda.empty_cache() gc.collect() # Save all observations to a CSV file and return the file path csv_file = save_to_csv(all_observations) return "Processing completed. Download the CSV file.", csv_file # Gradio interface def gradio_interface(video_files, standing, hands, location, screen): video_file_paths = [video.name for video in video_files] # Extract file paths from uploaded files return process_multiple_videos(video_file_paths, standing, hands, location, screen) # Inputs video_files = gr.File(file_count="multiple", file_types=["video"], label="Upload multiple videos") standing = gr.Checkbox(label="Standing") hands = gr.Checkbox(label="Hands Free") location = gr.Checkbox(label="Indoors") screen = gr.Checkbox(label="Screen Interaction") # Outputs response = gr.Textbox(label="Status") download_link = gr.File(label="Download CSV") # Gradio interface setup interface = gr.Interface( fn=gradio_interface, inputs=[video_files, standing, hands, location, screen], outputs=[response, download_link], title="GSoC Super Rapid Annotator - Batch Video Annotation", description="Upload multiple videos and process them sequentially, saving the results to a downloadable CSV file.", theme=gr.themes.Soft(primary_hue="red", secondary_hue="red"), allow_flagging="never" ) # Launch interface interface.launch(debug=False)