import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import warnings from typing import Dict import spaces device = "cuda" # Ignore warnings warnings.filterwarnings(action='ignore') # Set random seed torch.random.manual_seed(0) # Define model path and generation arguments model_path = "microsoft/Phi-3-mini-4k-instruct" generation_args = { "max_new_tokens": 50, "return_full_text": False, "temperature": 0.1, "do_sample": True } # Load the model and pipeline once and keep it in memory def load_model_pipeline(model_path: str): if not hasattr(load_model_pipeline, "pipe"): model = AutoModelForCausalLM.from_pretrained( model_path, device_map=device, torch_dtype="auto", trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(model_path) load_model_pipeline.pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) return load_model_pipeline.pipe # Initialize the pipeline and keep it in memory pipe = load_model_pipeline(model_path) # Generate output from LLM @spaces.GPU(duration=50) def generate_logic(llm_output: str) -> str: prompt = f""" Provide a detailed response based on the description: '{llm_output}'. """ messages = [ {"role": "system", "content": "Please provide a detailed response."}, {"role": "user", "content": prompt}, ] response = pipe(messages, **generation_args) generated_text = response[0]['generated_text'] # Log the generated text print(f"Generated Text: {generated_text}") return generated_text # Main function to process LLM output and return raw text def process_description(description: str) -> str: generated_output = generate_logic(description) return generated_output