# Importing the requirements import warnings warnings.filterwarnings("ignore") import gradio as gr from src.video_model import describe_video # Video and text inputs for the interface video = gr.Video(label="Video") query = gr.Textbox(label="Question", placeholder="Enter your question here") # Output for the interface response = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True) # Examples for the interface examples = [ [ "./videos/2016-01-01_0000_US_KNBC_The_Ellen_DeGeneres_Show_91.07-95.45_today.mp4", "Here are some frames of a video. Describe this video in detail.", ], [ "./videos/videos/2016-01-01_0100_UK_KCET_BBC_World_News_America_218.99-223.26_ago.mp4", "Here are some frames of a video. Describe this video in detail.", ], [" ./videos/2016-01-01_0100_US_KNBC_Channel_4_News_1877.19-1881.53_now.mp4", "Here are some frames of a video. Describe this video in detail.",], ] # Title, description, and article for the interface title = "GSoC Super Raid Annotator" description = "Gradio Demo for the MiniCPM-V 2.6 Vision Language Understanding and Generation model. This model can answer questions about videos in natural language. To use it, simply upload your video, type a question, and click 'submit', or click one of the examples to load them. Read more at the links below." article = "

Model GitHub Repo | Model Page

" # Launch the interface interface = gr.Interface( fn=describe_video, inputs=[video, query], outputs=response, examples=examples, title=title, description=description, article=article, theme="Soft", allow_flagging="never", ) interface.launch(debug=False)