import warnings warnings.filterwarnings("ignore") import gradio as gr import pandas as pd from src.video_model import describe_video from src.utils import parse_string, parse_annotations import os # --- Function to construct the final query --- def process_video_and_questions(video, standing, hands, location, screen): video_name = os.path.basename(video) query = f"Answer the questions from the video\n" additional_info = [] if standing: additional_info.append("Is the subject in the video standing or sitting?\n") if hands: additional_info.append("Is the subject holding any object in their hands?\n") if location: additional_info.append("Is the subject present indoors?\n") if screen: additional_info.append("Is the subject interacting with a screen in the background by facing the screen?\n") end_query = """Provide the results in tags, where 0 indicates False, 1 indicates True, and None indicates that no information is present. Follow the below examples\n: indoors: 0 standing: 1 hands.free: 0 screen.interaction_yes: 0 """ final_query = query + " " + " ".join(additional_info) final_prompt = final_query + " " + end_query response = describe_video(video, final_prompt) final_response = f"{video_name}" + " \n" + response conditions = { 'standing': (standing, 'standing: 1', 'standing: None'), 'hands': (hands, 'hands.free: 1', 'hands.free: None'), 'location': (location, 'indoors: 1', 'indoors: None'), 'screen': (screen, 'screen.interaction_yes: 1', 'screen.interaction_yes: None') } for key, (condition, to_replace, replacement) in conditions.items(): if not condition: final_response = final_response.replace(to_replace, replacement) return final_response def output_to_csv(final_response): parsed_content = parse_string(final_response, ["video_name", "annotation"]) video_name = parsed_content['video_name'][0] if parsed_content['video_name'] else None annotations_dict = parse_annotations(parsed_content['annotation']) if parsed_content['annotation'] else {} df = pd.DataFrame([{'video_name': video_name, **annotations_dict}]) # Save the DataFrame as a CSV file csv_file_path = f"{video_name}_annotations.csv" df.to_csv(csv_file_path, index=False) return csv_file_path # Return the path to the CSV file for download # Examples for the interface examples = [ ["videos/2016-01-01_0100_US_KNBC_Channel_4_News_1867.16-1871.38_now.mp4", True, False, True, False], ["videos/2016-01-01_0200_US_KNBC_Channel_4_News_1329.12-1333.29_tonight.mp4", False, True, True, True], ["videos/2016-01-01_0830_US_KNBC_Tonight_Show_with_Jimmy_Fallon_725.45-729.76_tonight.mp4", True, False, False, True], ["videos/2016-01-01_0200_US_KOCE_The_PBS_Newshour_577.03-581.31_tonight.mp4", False, True, True, False], ["videos/2016-01-01_1400_US_KTTV-FOX_Morning_News_at_6AM_1842.36-1846.68_this_year.mp4", True, True, False, False], ["videos/2016-01-02_0735_US_KCBS_Late_Show_with_Stephen_Colbert_285.94-290.67_this_year.mp4", False, True, True, True], ["videos/2016-01-13_2200_US_KTTV-FOX_The_Doctor_Oz_Show_1709.79-1714.17_this_month.mp4", True, False, False, True], ["videos/2016-01-01_1400_US_KTTV-FOX_Morning_News_at_6AM_1842.36-1846.68_this_year.mp4", False, True, True, False], ["videos/2016-01-01_1300_US_KNBC_Today_in_LA_at_5am_12.46-16.95_this_morning.mp4", True, False, False, True], ["videos/2016-01-05_0200_US_KNBC_Channel_4_News_1561.29-1565.95_next_week.mp4", False, True, True, False], ["videos/2016-01-28_0700_US_KNBC_Channel_4_News_at_11PM_629.56-633.99_in_the_future.mp4", True, False, False, True] ] title = "GSoC Super Raid Annotator" description = "Annotate Videos" article = "

Model GitHub Repo | Model Page

" custom_theme = gr.themes.Soft(primary_hue="red", secondary_hue="red") with gr.Blocks(theme=custom_theme) as demo: gr.Markdown(f"# {title}") gr.Markdown(description) gr.Markdown(article) with gr.Row(): with gr.Column(): video = gr.Video(label="Video") standing = gr.Checkbox(label="Standing") hands = gr.Checkbox(label="Hands Free") location = gr.Checkbox(label="Indoors") screen = gr.Checkbox(label="Screen Interaction") submit_btn = gr.Button("Generate Annotations") generate_csv_btn = gr.Button("Generate CSV") with gr.Column(): response = gr.Textbox(label="Video Description", show_label=True, show_copy_button=True) csv_output = gr.File(label="Download CSV", interactive=False) submit_btn.click( fn=process_video_and_questions, inputs=[video, standing, hands, location, screen], outputs=response ) generate_csv_btn.click( fn=output_to_csv, inputs=response, outputs=csv_output ) gr.Examples(examples=examples, inputs=[video, standing, hands, location, screen]) demo.launch(debug=False)