import warnings warnings.filterwarnings("ignore") import gradio as gr from src.video_model import describe_video # Your video processing function from src.text_processor import process_description # Your text processing function # --- Global variable to store the prediction --- prediction = None # --- Function to handle video processing --- def process_video(video, sitting, hands, location, screen): global prediction # Access the global prediction variable query = "Describe this video in detail and answer the questions." additional_info = [] if sitting: additional_info.append("Is the subject in the video standing or sitting?") if hands: additional_info.append("Is the subject holding any object in their hands, if so the hands are not free else they are free?") if location: additional_info.append("Is the subject present indoors or outdoors?") if screen: additional_info.append("Is the subject interacting with a screen in the background by facing the screen?") final_query = query + " " + " ".join(additional_info) prediction = describe_video(video, final_query) # Enable the "Process Text" button return gr.update(visible=True), prediction # --- Function to trigger text processing --- def process_and_display_text(): global prediction json_response = process_description(prediction) return json_response # ... (Gradio interface code) ... video = gr.Video(label="Video") sitting = gr.Checkbox(label="Sitting/Standing") hands = gr.Checkbox(label="Hands Free/Not Free") location = gr.Checkbox(label="Indoors/Outdoors") screen = gr.Checkbox(label="Screen Interaction") # Output components video_description = gr.Textbox(label="Video Description") json_output = gr.JSON(label="JSON Output") process_button = gr.Button("Process Text", visible=False) # Examples for the interface examples = [ ["videos/2016-01-01_0100_US_KNBC_Channel_4_News_1867.16-1871.38_now.mp4",], ["videos/2016-01-01_0200_US_KNBC_Channel_4_News_1329.12-1333.29_tonight.mp4",], ["videos/2016-01-01_0830_US_KNBC_Tonight_Show_with_Jimmy_Fallon_725.45-729.76_tonight.mp4",], ["videos/2016-01-01_0200_US_KOCE_The_PBS_Newshour_577.03-581.31_tonight.mp4"], ["videos/2016-01-01_1400_US_KTTV-FOX_Morning_News_at_6AM_1842.36-1846.68_this_year.mp4"], ["videos/2016-01-02_0735_US_KCBS_Late_Show_with_Stephen_Colbert_285.94-290.67_this_year.mp4"], ["videos/2016-01-13_2200_US_KTTV-FOX_The_Doctor_Oz_Show_1709.79-1714.17_this_month.mp4"], ["videos/2016-01-01_1400_US_KTTV-FOX_Morning_News_at_6AM_1842.36-1846.68_this_year.mp4"], ["videos/2016-01-01_1300_US_KNBC_Today_in_LA_at_5am_12.46-16.95_this_morning.mp4"], ["videos/2016-01-05_0200_US_KNBC_Channel_4_News_1561.29-1565.95_next_week.mp4"], ["videos/2016-01-28_0700_US_KNBC_Channel_4_News_at_11PM_629.56-633.99_in_the_future.mp4"] ] # Title, description, and article for the interface title = "GSoC Super Raid Annotator" description = "Annotate Videos" article = "
" custom_theme = gr.themes.Soft( primary_hue="red", secondary_hue="red" ) interface = gr.Interface( fn=process_video, inputs=[video, sitting, hands, location, screen], outputs=[process_button, video_description], examples=examples, title=title, description=description, article=article, theme=custom_theme, allow_flagging="never", ) # Click event for the "Process Text" button process_button.click(fn=process_and_display_text, outputs=json_output) interface.launch(debug=False)