# Importing the requirements import torch from transformers import AutoModel, AutoTokenizer import spaces from src.utils import encode_video # Device for the model device = "cuda" # Load the model and tokenizer model = AutoModel.from_pretrained( "openbmb/MiniCPM-V-2_6", trust_remote_code=True, attn_implementation="sdpa", torch_dtype=torch.bfloat16, ) model = model.to(device=device) tokenizer = AutoTokenizer.from_pretrained( "openbmb/MiniCPM-V-2_6", trust_remote_code=True ) model.eval() # @spaces.GPU(duration=20) def describe_video(video, question): """ Describes a video by generating an answer to a given question. Args: - video (str): The path to the video file. - question (str): The question to be answered about the video. Returns: str: The generated answer to the question. """ # Encode the video frames frames = encode_video(video) # Message format for the model msgs = [{"role": "user", "content": frames + [question]}] # Set decode params for video params = { "use_image_id": False, "max_slice_nums": 1, # Use 1 if CUDA OOM and video resolution > 448*448 } # Generate the answer answer = model.chat( image=None, msgs=msgs, tokenizer=tokenizer, sampling=True, stream=True, top_p=0.8, top_k=100, temperature=0.7, repetition_penalty=1.05, max_new_tokens=2048, system_prompt="You are an AI assistant specialized in visual content analysis. Given a video and a related question, analyze the video thoroughly and provide a precise and informative answer based on the visible content. Ensure your response is clear, accurate, and directly addresses the question.", **params ) # Return the answer return "".join(answer)