Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import AutoModel, AutoTokenizer | |
from huggingface_hub import hf_hub_download | |
import spaces | |
# Download the model and tokenizer | |
model_name = 'internlm/internlm-xcomposer2d5-7b' | |
model = AutoModel.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model.tokenizer = tokenizer | |
def process_video(video_path, query): | |
torch.set_grad_enabled(False) | |
with torch.autocast(device_type='cuda', dtype=torch.float16): | |
response, history = model.chat(tokenizer, query, [video_path], do_sample=False, num_beams=3, use_meta=True) | |
return response | |
iface = gr.Interface( | |
fn=process_video, | |
inputs=[ | |
gr.Video(label="Upload Video"), | |
gr.Textbox(label="Enter your query") | |
], | |
outputs=gr.Textbox(label="Response"), | |
title="Video Analysis with InternLM-XComposer", | |
description="Upload a video and ask a question about it." | |
) | |
iface.launch(debug=True) |