Spaces:
Runtime error
Runtime error
File size: 14,832 Bytes
f239efc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Llava.
"""
import itertools
from typing import List, Optional, Union
import PIL.Image
import numpy as np
from transformers import AutoTokenizer
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import (
ImageInput,
make_list_of_images,
valid_images,
infer_channel_dimension_format,
to_numpy_array,
get_image_size,
ChannelDimension,
)
from transformers.image_processing_utils import get_size_dict
from transformers.image_utils import PILImageResampling
from transformers.processing_utils import ProcessorMixin
from transformers.image_transforms import resize, pad, PaddingMode, to_channel_dimension_format, get_resize_output_image_size
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType
class PllavaProcessor(ProcessorMixin):
r"""
Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor.
[`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information.
Args:
image_processor ([`CLIPImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "CLIPImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor=None, tokenizer=None,
shortest_edge=336,
longest_edge=762,
center_pad=False):
self.shortest_edge = shortest_edge
self.longest_edge = longest_edge
self.center_pad = center_pad
super().__init__(image_processor, tokenizer)
def resize_crop_longshort(self, videos: list[list[np.ndarray]], input_data_format):
video_spatial_sizes = [get_image_size(images[0], input_data_format) for images in videos]
long_short_rates = [max(size) / min(size) for size in video_spatial_sizes]
min_long_short_rate = min(long_short_rates)
min_long_short_video_idx = long_short_rates.index(min_long_short_rate)
clip_resolution = self.image_processor.size['shortest_edge']
out_video_spatial_size = video_spatial_sizes[min_long_short_video_idx]
out_videos_short_edge = max(min(size) for size in video_spatial_sizes)
resize_longest_edge = max(max(size) for size in video_spatial_sizes)
resize_longest_edge = min(640, resize_longest_edge)
out_videos_short_edge = min(out_videos_short_edge, int(resize_longest_edge / min_long_short_rate))
out_videos_short_edge = max(out_videos_short_edge, clip_resolution)
if out_video_spatial_size[0] > out_video_spatial_size[1]: # h > w:
out_video_spatial_size = (int(out_videos_short_edge * min_long_short_rate), out_videos_short_edge )
else:
out_video_spatial_size = ( out_videos_short_edge, int(out_videos_short_edge * min_long_short_rate) )
videos = [
[self.resize(frame, input_data_format=input_data_format, shortest_edge=out_videos_short_edge, longest_edge=9999) for frame in frames]
for frames in videos
]
out_videos = []
for frames in videos:
out_frames = []
video_spatial_size = get_image_size(frames[0], input_data_format)
assert min(video_spatial_size) == out_videos_short_edge
overhead = (max(video_spatial_size) - max(out_video_spatial_size)) // 2
slice_start, slice_end = overhead // 2, overhead // 2 + max(out_video_spatial_size)
hslice, wslice = (slice(slice_start, slice_end), slice(None, None)) if video_spatial_size[0] > video_spatial_size[1] \
else (slice(None, None), slice(slice_start, slice_end)) # h > w
for frame in frames:
if input_data_format == ChannelDimension.FIRST:
out_frames.append(frame[..., hslice, wslice])
elif input_data_format == ChannelDimension.LAST:
out_frames.append(frame[..., hslice, wslice, :])
out_videos.append(out_frames)
return out_videos
@staticmethod
def _compute_num_blocks_and_overlaps(input_shape, resolution):
input_shape = np.array(input_shape)
resolution = np.array(resolution)
assert input_shape.max() >= resolution
num_blocks = np.ceil(input_shape / resolution).astype(np.int32).tolist()
overlaps = [0 if size % resolution==0
else int(np.floor((resolution - size % resolution) / (num_block - 1))) for num_block, size in zip(num_blocks, input_shape)]
return num_blocks, overlaps
def resize(
self,
image: np.ndarray,
resample: PILImageResampling = PILImageResampling.BICUBIC, # type: ignore
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
shortest_edge: int = None,
longest_edge: int = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
shortest_edge = getattr(self, 'shortest_edge', None) if shortest_edge is None else shortest_edge
longest_edge = getattr(self, 'longest_edge', None) if longest_edge is None else longest_edge
default_to_square = False
output_size = get_resize_output_image_size(
image,
size=shortest_edge,
default_to_square=default_to_square,
max_size=longest_edge,
input_data_format=input_data_format,
)
clip_resolution = self.image_processor.size['shortest_edge']
if min(output_size) < clip_resolution:
output_size = get_resize_output_image_size(
image,
size=shortest_edge,
default_to_square=default_to_square,
input_data_format=input_data_format,
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: ImageInput = None,
center_pad = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
data=dict()
if images is not None:
if isinstance(images, list) and isinstance(images[0], PIL.Image.Image):
videos = [images] # one video
else:
videos = images
pixel_values_list = []
videos = [[to_numpy_array(image) for image in make_list_of_images(images)] for images in videos]
# images = [self.resize(image, ) if min(get_image_size(image, input_data_format)) < clip_resolution else image for image in images]
input_data_format = infer_channel_dimension_format(videos[0][0])
videos = self.resize_crop_longshort(videos, input_data_format)
for images in videos:
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
center_pad = center_pad if center_pad is not None else self.center_pad
if center_pad:
images = [self.pad_to_square(image, 0, input_data_format, input_data_format) for image in images]
pixel_values = self.image_processor(images, return_tensors='np')["pixel_values"]
pixel_values_list.append(pixel_values)
pixel_values = np.concatenate(pixel_values_list)
data.update(pixel_values=pixel_values)
else:
data.update(pixel_values = None)
if text is not None:
text_inputs = self.tokenizer(
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
)
data.update(**text_inputs)
return BatchFeature(data, tensor_type=return_tensors)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|