pllava-34b-demo / models /pllava /configuration_pllava.py
cathyxl
added
f239efc
raw
history blame
6.55 kB
# coding=utf-8
# Copyright 2023 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Llava model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers.models.auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
PLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"llava-hf/llava-v1.5-7b": "https://huggingface.co/llava-hf/llava-v1.5-7b/resolve/main/config.json",
}
class PllavaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`]. It is used to instantiate an
Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Llava-9B.
e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`LlavaVisionConfig`, *optional*):
Custom vision config or dict
text_config (`Union[AutoConfig, dict]`, *optional*):
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
image_token_index (`int`, *optional*, defaults to 32000):
The image token index to encode the image prompt.
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function used by the multimodal projector.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the CLIP backbone.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Llava model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~LlavaForConditionalGeneration`]
Example:
```python
>>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = CLIPVisionConfig()
>>> # Initializing a Llama config
>>> text_config = LlamaConfig()
>>> # Initializing a Llava llava-1.5-7b style configuration
>>> configuration = LlavaConfig(vision_config, text_config)
>>> # Initializing a model from the llava-1.5-7b style configuration
>>> model = LlavaForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "llava"
is_composition = False
def __init__(
self,
vision_config=None,
text_config=None,
ignore_index=-100,
image_token_index=32000,
projector_hidden_act="gelu",
vision_feature_select_strategy="default",
vision_feature_layer=-2,
vocab_size=32000,
pooling_method='avg',
pooling_shape=(8, 16, 16),
frame_shape=(24, 24), # llava 1.5 pretrained frame shape
num_frames=1, # llava 1.5 pretrained frame shape
use_pooling=True,
gradient_checkpointing=False,
**kwargs,
):
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
self.vocab_size = vocab_size
self.use_pooling = use_pooling
self.gradient_checkpointing = gradient_checkpointing
self.vision_config = vision_config
self.pooling_method = pooling_method # should be in 'max', 'avg'
self.pooling_shape = pooling_shape #
self.frame_shape = frame_shape #
self.num_frames = num_frames
if isinstance(self.vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
)
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
self.vision_config = CONFIG_MAPPING["clip_vision_model"](
intermediate_size=4096,
hidden_size=1024,
patch_size=14,
image_size=336,
num_hidden_layers=24,
num_attention_heads=16,
vocab_size=32000,
projection_dim=768,
)
self.vocab_size = self.vocab_size
self.text_config = text_config
if isinstance(self.text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
self.vocab_size = self.text_config.vocab_size
self.text_config.gradient_checkpointing = self.gradient_checkpointing
elif text_config is None:
tmp_config = {"_attn_implementation":"flash_attention_2",
"gradient_checkpointing": self.gradient_checkpointing}
self.text_config = CONFIG_MAPPING["llama"](**tmp_config)
self.text_config.gradient_checkpointing = self.gradient_checkpointing
# self.text_config["_attn_implementation"]="flash_attention_2" # xl: temporal hard code
super().__init__(**kwargs)