Spaces:
Sleeping
Sleeping
import streamlit as st | |
from sentence_transformers import SentenceTransformer, util | |
import pandas as pd | |
import numpy as np | |
# Load pre-trained model | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Load the course data from CSV | |
df = pd.read_csv('analytics.csv') | |
# Generate embeddings for course titles and descriptions | |
course_embeddings = model.encode(df['Title'] + ' ' + df['Description'], convert_to_tensor=True) | |
# Function to search for courses based on a query | |
def search_courses(query, top_n=5): | |
if top_n <= 0: | |
raise ValueError("top_n must be greater than zero") | |
query_embedding = model.encode(query, convert_to_tensor=True) | |
similarities = util.pytorch_cos_sim(query_embedding, course_embeddings)[0].numpy() | |
if np.any(np.isnan(similarities)) or np.any(np.isinf(similarities)): | |
raise ValueError("Similarity scores contain NaN or infinity values") | |
top_results = np.argsort(similarities)[::-1][:top_n] | |
results = [] | |
for idx in top_results: | |
course_info = { | |
'Title': df.iloc[idx]['Title'], | |
'Description': df.iloc[idx]['Description'], | |
'Link': df.iloc[idx]['Link'], | |
'Relevance Score': similarities[idx].item() | |
} | |
results.append(course_info) | |
return results | |
# Streamlit app configuration | |
st.set_page_config(page_title="Smart Course Finder", layout="centered") | |
# App title and description | |
st.title("π Smart Course Finder for Analytics Vidhya") | |
st.markdown(""" | |
Find the best free courses that match your learning interests. Enter a keyword or topic to discover the most relevant courses available. | |
""") | |
# Input field for the query | |
query = st.text_input("Enter your search query:", placeholder="e.g., Machine Learning, Data Science, Generative AI") | |
# Search button and display results | |
if st.button("Search") and query: | |
with st.spinner("Searching for courses..."): | |
try: | |
top_courses = search_courses(query) | |
if top_courses: | |
st.success("Top courses found:") | |
for course in top_courses: | |
st.subheader(f"π {course['Title']}") | |
st.write(f"**Description**: {course['Description']}") | |
st.write(f"**Relevance Score**: {course['Relevance Score']:.2f}") | |
st.markdown(f"[π View Course]({course['Link']})", unsafe_allow_html=True) | |
st.markdown("---") | |
else: | |
st.warning("No courses found for the given query. Try different keywords.") | |
except ValueError as e: | |
st.error(f"Error: {e}") | |
# Footer with credits | |
st.markdown(""" | |
--- | |
*Built with β€οΈ using Streamlit and SentenceTransformers* | |
""") | |