Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from
|
|
|
4 |
from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionUpscalePipeline
|
5 |
|
6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -19,16 +20,18 @@ output_image = gr.outputs.Image(type="filepath")
|
|
19 |
# Define the function that will be called when the interface is used
|
20 |
def upscale_image(model, image):
|
21 |
# Convert the image to a PyTorch tensor
|
22 |
-
|
|
|
|
|
23 |
|
24 |
# Upscale the image using the selected model
|
25 |
if model == "SD 2.0 2x Latent Upscaler":
|
26 |
-
|
27 |
else:
|
28 |
-
|
29 |
|
30 |
# Convert the upscaled tensor back to a PIL image
|
31 |
-
|
32 |
|
33 |
# Return the upscaled image
|
34 |
return upscaled_image
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from io import BytesIO
|
5 |
from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionUpscalePipeline
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
20 |
# Define the function that will be called when the interface is used
|
21 |
def upscale_image(model, image):
|
22 |
# Convert the image to a PyTorch tensor
|
23 |
+
generator = torch.manual_seed(999999)
|
24 |
+
low_res_img = Image.open(low_res_img).convert("RGB")
|
25 |
+
low_res_latents = low_res_img
|
26 |
|
27 |
# Upscale the image using the selected model
|
28 |
if model == "SD 2.0 2x Latent Upscaler":
|
29 |
+
upscaled_image = sd_2_0_2x(image)
|
30 |
else:
|
31 |
+
upscaled_image = sd_2_1_4x(image)
|
32 |
|
33 |
# Convert the upscaled tensor back to a PIL image
|
34 |
+
|
35 |
|
36 |
# Return the upscaled image
|
37 |
return upscaled_image
|