Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -13,15 +13,12 @@ model_4x = "stabilityai/stable-diffusion-x4-upscaler"
|
|
13 |
sd_2_0_2x = StableDiffusionLatentUpscalePipelin.from_pretrained(model_2x, torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionLatentUpscalePipeline.from_pretrained(model_2x)
|
14 |
sd_2_1_4x = StableDiffusionUpscalePipeline.from_pretrained(model_4x, torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionUpscalePipeline.from_pretrained(model_4x)
|
15 |
|
16 |
-
# Define the input and output components for the Gradio interface
|
17 |
-
input_image = gr.inputs.Image(type="filepath")
|
18 |
-
output_image = gr.outputs.Image(type="filepath")
|
19 |
-
|
20 |
# Define the function that will be called when the interface is used
|
|
|
21 |
def upscale_image(model, input_image):
|
22 |
# Convert the image to a PyTorch tensor
|
23 |
generator = torch.manual_seed(999999)
|
24 |
-
|
25 |
|
26 |
|
27 |
# Upscale the image using the selected model
|
@@ -39,8 +36,8 @@ def upscale_image(model, input_image):
|
|
39 |
# Define the Gradio interface
|
40 |
iface = gr.Interface(
|
41 |
fn=upscale_image,
|
42 |
-
inputs=[gr.Radio(["SD 2.0 2x Latent Upscaler", "SD 2.1 4x Upscaler"]),
|
43 |
-
outputs=
|
44 |
title="Image Upscaler",
|
45 |
description="Upscale an image using either the SD 2.0 2x Latent Upscaler or the SD 2.1 4x Upscaler."
|
46 |
)
|
|
|
13 |
sd_2_0_2x = StableDiffusionLatentUpscalePipelin.from_pretrained(model_2x, torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionLatentUpscalePipeline.from_pretrained(model_2x)
|
14 |
sd_2_1_4x = StableDiffusionUpscalePipeline.from_pretrained(model_4x, torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionUpscalePipeline.from_pretrained(model_4x)
|
15 |
|
|
|
|
|
|
|
|
|
16 |
# Define the function that will be called when the interface is used
|
17 |
+
|
18 |
def upscale_image(model, input_image):
|
19 |
# Convert the image to a PyTorch tensor
|
20 |
generator = torch.manual_seed(999999)
|
21 |
+
input_image = Image.open(input_image).convert("RGB")
|
22 |
|
23 |
|
24 |
# Upscale the image using the selected model
|
|
|
36 |
# Define the Gradio interface
|
37 |
iface = gr.Interface(
|
38 |
fn=upscale_image,
|
39 |
+
inputs=[gr.Radio(["SD 2.0 2x Latent Upscaler", "SD 2.1 4x Upscaler"]), gr.Image(type="filepath")],
|
40 |
+
outputs=gr.Image(type="filepath"),
|
41 |
title="Image Upscaler",
|
42 |
description="Upscale an image using either the SD 2.0 2x Latent Upscaler or the SD 2.1 4x Upscaler."
|
43 |
)
|