Manjushri commited on
Commit
5f6827d
·
1 Parent(s): 5769bfc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -10
app.py CHANGED
@@ -4,6 +4,7 @@ import numpy as np
4
  from PIL import Image
5
  from datasets import load_dataset
6
  from diffusers import StableDiffusionImg2ImgPipeline
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2")
9
  pipe = pipe.to(device)
@@ -20,13 +21,9 @@ def infer(source_img, prompt, guide, steps, seed, Strength):
20
  image = pipe([prompt], init_image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0]
21
  return image
22
 
23
- gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image"), gr.Textbox(label = 'Prompt Input Text'),
24
- gr.Slider(2, 15, value = 7, label = 'Guidence Scale'),
25
- gr.Slider(10, 50, value = 25, step = 1, label = 'Number of Iterations'),
26
- gr.Slider(
27
- label = "Seed",
28
- minimum = 0,
29
- maximum = 2147483647,
30
- step = 1,
31
- randomize = True), gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)
32
- ], outputs='image', title = "Stable Diffusion 2.0 Image to Image Pipeline CPU", description = "For more information on Stable Diffusion 2.0 see https://github.com/Stability-AI/stablediffusion <br><br>Upload an Image (must be .PNG and 512x512-2048x2048) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()
 
4
  from PIL import Image
5
  from datasets import load_dataset
6
  from diffusers import StableDiffusionImg2ImgPipeline
7
+
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2")
10
  pipe = pipe.to(device)
 
21
  image = pipe([prompt], init_image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0]
22
  return image
23
 
24
+ gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. <b>Must Be .png"), gr.Textbox(label = 'Prompt Input Text. <b>77 Token (Keyword or Symbol) Maximum'),
25
+ gr.Slider(2, 15, value = 7, label = 'Guidance Scale'),
26
+ gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'),
27
+ gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
28
+ gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)],
29
+ outputs='image', title = "Stable Diffusion 2.0 Image to Image Pipeline CPU", description = "For more information on Stable Diffusion 2.0 see https://github.com/Stability-AI/stablediffusion <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()