Spaces:
Running
on
T4
Running
on
T4
File size: 6,225 Bytes
d9f82df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
from functools import partial
import torch
import torch.nn.functional as F
from einops import rearrange
from rotary_embedding_torch import RotaryEmbedding, broadcat
from torch import nn
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_tuple(val, depth = 1):
if isinstance(val, list):
val = tuple(val)
return val if isinstance(val, tuple) else (val,) * depth
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def stable_softmax(t, dim = -1, alpha = 32 ** 2):
t = t / alpha
t = t - torch.amax(t, dim = dim, keepdim = True).detach()
return (t * alpha).softmax(dim = dim)
def route_args(router, args, depth):
routed_args = [(dict(), dict()) for _ in range(depth)]
matched_keys = [key for key in args.keys() if key in router]
for key in matched_keys:
val = args[key]
for depth, ((f_args, g_args), routes) in enumerate(zip(routed_args, router[key])):
new_f_args, new_g_args = map(lambda route: ({key: val} if route else {}), routes)
routed_args[depth] = ({**f_args, **new_f_args}, {**g_args, **new_g_args})
return routed_args
# classes
class SequentialSequence(nn.Module):
def __init__(self, layers, args_route = {}, layer_dropout = 0.):
super().__init__()
assert all(len(route) == len(layers) for route in args_route.values()), 'each argument route map must have the same depth as the number of sequential layers'
self.layers = layers
self.args_route = args_route
self.layer_dropout = layer_dropout
def forward(self, x, **kwargs):
args = route_args(self.args_route, kwargs, len(self.layers))
layers_and_args = list(zip(self.layers, args))
for (f, g), (f_args, g_args) in layers_and_args:
x = x + f(x, **f_args)
x = x + g(x, **g_args)
return x
class DivideMax(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
maxes = x.amax(dim = self.dim, keepdim = True).detach()
return x / maxes
# https://arxiv.org/abs/2103.17239
class LayerScale(nn.Module):
def __init__(self, dim, depth, fn):
super().__init__()
if depth <= 18:
init_eps = 0.1
elif depth > 18 and depth <= 24:
init_eps = 1e-5
else:
init_eps = 1e-6
scale = torch.zeros(1, 1, dim).fill_(init_eps)
self.scale = nn.Parameter(scale)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) * self.scale
# layer norm
class PreNorm(nn.Module):
def __init__(self, dim, fn, sandwich = False):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.norm_out = nn.LayerNorm(dim) if sandwich else nn.Identity()
self.fn = fn
def forward(self, x, **kwargs):
x = self.norm(x)
x = self.fn(x, **kwargs)
return self.norm_out(x)
# feed forward
class GEGLU(nn.Module):
def forward(self, x):
x, gates = x.chunk(2, dim = -1)
return x * F.gelu(gates)
class FeedForward(nn.Module):
def __init__(self, dim, dropout = 0., mult = 4.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, dim * mult * 2),
GEGLU(),
nn.Dropout(dropout),
nn.Linear(dim * mult, dim)
)
def forward(self, x):
return self.net(x)
# Attention
class Attention(nn.Module):
def __init__(self, dim, seq_len, causal = True, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.seq_len = seq_len
self.scale = dim_head ** -0.5
self.causal = causal
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, mask = None):
b, n, _, h, device = *x.shape, self.heads, x.device
softmax = torch.softmax
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
q = q * self.scale
dots = torch.einsum('b h i d, b h j d -> b h i j', q, k)
mask_value = max_neg_value(dots)
if exists(mask):
mask = rearrange(mask, 'b j -> b () () j')
dots.masked_fill_(~mask, mask_value)
del mask
if self.causal:
i, j = dots.shape[-2:]
mask = torch.ones(i, j, device = device).triu_(j - i + 1).bool()
dots.masked_fill_(mask, mask_value)
attn = softmax(dots, dim=-1)
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
# main transformer class
class Transformer(nn.Module):
def __init__(
self,
*,
dim,
depth,
seq_len,
causal = True,
heads = 8,
dim_head = 64,
ff_mult = 4,
attn_dropout = 0.,
ff_dropout = 0.,
sparse_attn = False,
sandwich_norm = False,
):
super().__init__()
layers = nn.ModuleList([])
sparse_layer = cast_tuple(sparse_attn, depth)
for ind, sparse_attn in zip(range(depth), sparse_layer):
attn = Attention(dim, causal = causal, seq_len = seq_len, heads = heads, dim_head = dim_head, dropout = attn_dropout)
ff = FeedForward(dim, mult = ff_mult, dropout = ff_dropout)
layers.append(nn.ModuleList([
LayerScale(dim, ind + 1, PreNorm(dim, attn, sandwich = sandwich_norm)),
LayerScale(dim, ind + 1, PreNorm(dim, ff, sandwich = sandwich_norm))
]))
execute_type = SequentialSequence
route_attn = ((True, False),) * depth
attn_route_map = {'mask': route_attn}
self.layers = execute_type(layers, args_route = attn_route_map)
def forward(self, x, **kwargs):
return self.layers(x, **kwargs)
|