File size: 36,868 Bytes
d9f82df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa68c71
 
d9f82df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
import os
import random
import uuid
from time import time
from urllib import request

import torch
import torch.nn.functional as F
import progressbar
import torchaudio

from tortoise.models.classifier import AudioMiniEncoderWithClassifierHead
from tortoise.models.diffusion_decoder import DiffusionTts
from tortoise.models.autoregressive import UnifiedVoice
from tqdm import tqdm
from tortoise.models.arch_util import TorchMelSpectrogram
from tortoise.models.clvp import CLVP
from tortoise.models.cvvp import CVVP
from tortoise.models.random_latent_generator import RandomLatentConverter
from tortoise.models.vocoder import UnivNetGenerator
from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel
from tortoise.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
from tortoise.utils.tokenizer import VoiceBpeTokenizer
from tortoise.utils.wav2vec_alignment import Wav2VecAlignment
from contextlib import contextmanager
pbar = None

DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser('~'), '.cache', 'tortoise', 'models')
MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR', DEFAULT_MODELS_DIR)
MODELS = {
    'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth',
    'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth',
    'clvp2.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clvp2.pth',
    'cvvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/cvvp.pth',
    'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth',
    'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth',
    'rlg_auto.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth',
    'rlg_diffuser.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth',
}

def download_models(specific_models=None):
    """
    Call to download all the models that Tortoise uses.
    """
    os.makedirs(MODELS_DIR, exist_ok=True)

    def show_progress(block_num, block_size, total_size):
        global pbar
        if pbar is None:
            pbar = progressbar.ProgressBar(maxval=total_size)
            pbar.start()

        downloaded = block_num * block_size
        if downloaded < total_size:
            pbar.update(downloaded)
        else:
            pbar.finish()
            pbar = None
    for model_name, url in MODELS.items():
        if specific_models is not None and model_name not in specific_models:
            continue
        model_path = os.path.join(MODELS_DIR, model_name)
        if os.path.exists(model_path):
            continue
        print(f'Downloading {model_name} from {url}...')
        request.urlretrieve(url, model_path, show_progress)
        print('Done.')


def get_model_path(model_name, models_dir=MODELS_DIR):
    """
    Get path to given model, download it if it doesn't exist.
    """
    if model_name not in MODELS:
        raise ValueError(f'Model {model_name} not found in available models.')
    model_path = os.path.join(models_dir, model_name)
    if not os.path.exists(model_path) and models_dir == MODELS_DIR:
        download_models([model_name])
    return model_path


def pad_or_truncate(t, length):
    """
    Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s.
    """
    if t.shape[-1] == length:
        return t
    elif t.shape[-1] < length:
        return F.pad(t, (0, length-t.shape[-1]))
    else:
        return t[..., :length]


def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1):
    """
    Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
    """
    return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
                           model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
                           conditioning_free=cond_free, conditioning_free_k=cond_free_k)


def format_conditioning(clip, cond_length=132300, device="cuda" if not torch.backends.mps.is_available() else 'mps'):
    """
    Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models.
    """
    gap = clip.shape[-1] - cond_length
    if gap < 0:
        clip = F.pad(clip, pad=(0, abs(gap)))
    elif gap > 0:
        rand_start = random.randint(0, gap)
        clip = clip[:, rand_start:rand_start + cond_length]
    mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0)
    return mel_clip.unsqueeze(0).to(device)


def fix_autoregressive_output(codes, stop_token, complain=True):
    """
    This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
    trained on and what the autoregressive code generator creates (which has no padding or end).
    This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
    a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
    and copying out the last few codes.

    Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
    """
    # Strip off the autoregressive stop token and add padding.
    stop_token_indices = (codes == stop_token).nonzero()
    if len(stop_token_indices) == 0:
        if complain:
            print("No stop tokens found in one of the generated voice clips. This typically means the spoken audio is "
                  "too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, "
                  "try breaking up your input text.")
        return codes
    else:
        codes[stop_token_indices] = 83
    stm = stop_token_indices.min().item()
    codes[stm:] = 83
    if stm - 3 < codes.shape[0]:
        codes[-3] = 45
        codes[-2] = 45
        codes[-1] = 248

    return codes


def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True):
    """
    Uses the specified diffusion model to convert discrete codes into a spectrogram.
    """
    with torch.no_grad():
        output_seq_len = latents.shape[1] * 4 * 24000 // 22050  # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
        output_shape = (latents.shape[0], 100, output_seq_len)
        precomputed_embeddings = diffusion_model.timestep_independent(latents, conditioning_latents, output_seq_len, False)

        noise = torch.randn(output_shape, device=latents.device) * temperature
        mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
                                      model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings},
                                     progress=verbose)
        return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]


def classify_audio_clip(clip):
    """
    Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise.
    :param clip: torch tensor containing audio waveform data (get it from load_audio)
    :return: True if the clip was classified as coming from Tortoise and false if it was classified as real.
    """
    classifier = AudioMiniEncoderWithClassifierHead(2, spec_dim=1, embedding_dim=512, depth=5, downsample_factor=4,
                                                    resnet_blocks=2, attn_blocks=4, num_attn_heads=4, base_channels=32,
                                                    dropout=0, kernel_size=5, distribute_zero_label=False)
    classifier.load_state_dict(torch.load(get_model_path('classifier.pth'), map_location=torch.device('cpu')))
    clip = clip.cpu().unsqueeze(0)
    results = F.softmax(classifier(clip), dim=-1)
    return results[0][0]


def pick_best_batch_size_for_gpu():
    """
    Tries to pick a batch size that will fit in your GPU. These sizes aren't guaranteed to work, but they should give
    you a good shot.
    """
    if torch.cuda.is_available():
        _, available = torch.cuda.mem_get_info()
        availableGb = available / (1024 ** 3)
        if availableGb > 14:
            return 16
        elif availableGb > 10:
            return 8
        elif availableGb > 7:
            return 4
    if torch.backends.mps.is_available():
        import psutil
        available = psutil.virtual_memory().total
        availableGb = available / (1024 ** 3)
        if availableGb > 14:
            return 16
        elif availableGb > 10:
            return 8
        elif availableGb > 7:
            return 4
    return 1

class TextToSpeech:
    """
    Main entry point into Tortoise.
    """

    def __init__(self, autoregressive_batch_size=None, models_dir=MODELS_DIR, 
                 enable_redaction=True, kv_cache=False, use_deepspeed=False, half=False, device=None,
                 tokenizer_vocab_file=None, tokenizer_basic=False):

        """
        Constructor
        :param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
                                          GPU OOM errors. Larger numbers generates slightly faster.
        :param models_dir: Where model weights are stored. This should only be specified if you are providing your own
                           models, otherwise use the defaults.
        :param enable_redaction: When true, text enclosed in brackets are automatically redacted from the spoken output
                                 (but are still rendered by the model). This can be used for prompt engineering.
                                 Default is true.
        :param device: Device to use when running the model. If omitted, the device will be automatically chosen.
        """
        self.models_dir = models_dir
        self.autoregressive_batch_size = pick_best_batch_size_for_gpu() if autoregressive_batch_size is None else autoregressive_batch_size
        self.enable_redaction = enable_redaction
        self.device = torch.device('cuda' if torch.cuda.is_available() else'cpu')
        if torch.backends.mps.is_available():
            self.device = torch.device('mps')
        if self.enable_redaction:
            self.aligner = Wav2VecAlignment()

        self.tokenizer = VoiceBpeTokenizer(
            vocab_file=tokenizer_vocab_file,
            use_basic_cleaners=tokenizer_basic,
        )
        self.half = half
        if os.path.exists(f'{models_dir}/autoregressive.ptt'):
            # Assume this is a traced directory.
            self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt')
            self.diffusion = torch.jit.load(f'{models_dir}/diffusion_decoder.ptt')
        else:
            self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
                                          model_dim=1024,
                                          heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
                                          train_solo_embeddings=False).cpu().eval()
            self.autoregressive.load_state_dict(torch.load(get_model_path('autoregressive.pth', models_dir)), strict=False)
            self.autoregressive.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=kv_cache, half=self.half)
            
            self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
                                          in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
                                          layer_drop=0, unconditioned_percentage=0).cpu().eval()
            self.diffusion.load_state_dict(torch.load(get_model_path('diffusion_decoder.pth', models_dir)))

        self.clvp = CLVP(dim_text=768, dim_speech=768, dim_latent=768, num_text_tokens=256, text_enc_depth=20,
                         text_seq_len=350, text_heads=12,
                         num_speech_tokens=8192, speech_enc_depth=20, speech_heads=12, speech_seq_len=430,
                         use_xformers=True).cpu().eval()
        self.clvp.load_state_dict(torch.load(get_model_path('clvp2.pth', models_dir)))
        self.cvvp = None # CVVP model is only loaded if used.

        self.vocoder = UnivNetGenerator().cpu()
        self.vocoder.load_state_dict(torch.load(get_model_path('vocoder.pth', models_dir), map_location=torch.device('cpu'))['model_g'])
        self.vocoder.eval(inference=True)

        # Random latent generators (RLGs) are loaded lazily.
        self.rlg_auto = None
        self.rlg_diffusion = None
    @contextmanager
    def temporary_cuda(self, model):
        m = model.to(self.device)
        yield m
        m = model.cpu()

    
    def load_cvvp(self):
        """Load CVVP model."""
        self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
                         speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
        self.cvvp.load_state_dict(torch.load(get_model_path('cvvp.pth', self.models_dir)))

    def get_conditioning_latents(self, voice_samples, return_mels=False):
        """
        Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent).
        These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic
        properties.
        :param voice_samples: List of 2 or more ~10 second reference clips, which should be torch tensors containing 22.05kHz waveform data.
        """
        with torch.no_grad():
            voice_samples = [v.to(self.device) for v in voice_samples]

            auto_conds = []
            if not isinstance(voice_samples, list):
                voice_samples = [voice_samples]
            for vs in voice_samples:
                auto_conds.append(format_conditioning(vs, device=self.device))
            auto_conds = torch.stack(auto_conds, dim=1)
            self.autoregressive = self.autoregressive.to(self.device)
            auto_latent = self.autoregressive.get_conditioning(auto_conds)
            self.autoregressive = self.autoregressive.cpu()

            diffusion_conds = []
            for sample in voice_samples:
                # The diffuser operates at a sample rate of 24000 (except for the latent inputs)
                sample = torchaudio.functional.resample(sample, 22050, 24000)
                sample = pad_or_truncate(sample, 102400)
                cond_mel = wav_to_univnet_mel(sample.to(self.device), do_normalization=False, device=self.device)
                diffusion_conds.append(cond_mel)
            diffusion_conds = torch.stack(diffusion_conds, dim=1)

            self.diffusion = self.diffusion.to(self.device)
            diffusion_latent = self.diffusion.get_conditioning(diffusion_conds)
            self.diffusion = self.diffusion.cpu()

        if return_mels:
            return auto_latent, diffusion_latent, auto_conds, diffusion_conds
        else:
            return auto_latent, diffusion_latent

    def get_random_conditioning_latents(self):
        # Lazy-load the RLG models.
        if self.rlg_auto is None:
            self.rlg_auto = RandomLatentConverter(1024).eval()
            self.rlg_auto.load_state_dict(torch.load(get_model_path('rlg_auto.pth', self.models_dir), map_location=torch.device('cpu')))
            self.rlg_diffusion = RandomLatentConverter(2048).eval()
            self.rlg_diffusion.load_state_dict(torch.load(get_model_path('rlg_diffuser.pth', self.models_dir), map_location=torch.device('cpu')))
        with torch.no_grad():
            return self.rlg_auto(torch.tensor([0.0])), self.rlg_diffusion(torch.tensor([0.0]))

    def tts_with_preset(self, text, preset='fast', **kwargs):
        """
        Calls TTS with one of a set of preset generation parameters. Options:
            'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest).
            'fast': Decent quality speech at a decent inference rate. A good choice for mass inference.
            'standard': Very good quality. This is generally about as good as you are going to get.
            'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
        """
        # Use generally found best tuning knobs for generation.
        settings = {'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
                    'top_p': .8,
                    'cond_free_k': 2.0, 'diffusion_temperature': 1.0}
        # Presets are defined here.
        presets = {
            'ultra_fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
            'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
            'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
            'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
        }
        settings.update(presets[preset])
        settings.update(kwargs) # allow overriding of preset settings with kwargs
        return self.tts(text, **settings)

    def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None,
            return_deterministic_state=False,
            # autoregressive generation parameters follow
            num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
            # CVVP parameters follow
            cvvp_amount=.0,
            # diffusion generation parameters follow
            diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
            **hf_generate_kwargs):
        """
        Produces an audio clip of the given text being spoken with the given reference voice.
        :param text: Text to be spoken.
        :param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data.
        :param conditioning_latents: A tuple of (autoregressive_conditioning_latent, diffusion_conditioning_latent), which
                                     can be provided in lieu of voice_samples. This is ignored unless voice_samples=None.
                                     Conditioning latents can be retrieved via get_conditioning_latents().
        :param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned.
        :param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true.
        ~~AUTOREGRESSIVE KNOBS~~
        :param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP.
               As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great".
        :param temperature: The softmax temperature of the autoregressive model.
        :param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.
        :param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence
                                   of long silences or "uhhhhhhs", etc.
        :param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs.
        :param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second.
        :param typical_sampling: Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666
                                 I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but
                                 could use some tuning.
        :param typical_mass: The typical_mass parameter from the typical_sampling algorithm.
        ~~CLVP-CVVP KNOBS~~
        :param cvvp_amount: Controls the influence of the CVVP model in selecting the best output from the autoregressive model.
                            [0,1]. Values closer to 1 mean the CVVP model is more important, 0 disables the CVVP model.
        ~~DIFFUSION KNOBS~~
        :param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine
                                     the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better,
                                     however.
        :param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for
                          each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output
                          of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and
                          dramatically improves realism.
        :param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf].
                            As cond_free_k increases, the output becomes dominated by the conditioning-free signal.
                            Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k
        :param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0
                                      are the "mean" prediction of the diffusion network and will sound bland and smeared.
        ~~OTHER STUFF~~
        :param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer.
                                   Extra keyword args fed to this function get forwarded directly to that API. Documentation
                                   here: https://huggingface.co/docs/transformers/internal/generation_utils
        :return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
                 Sample rate is 24kHz.
        """
        deterministic_seed = self.deterministic_state(seed=use_deterministic_seed)

        text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device)
        text_tokens = F.pad(text_tokens, (0, 1))  # This may not be necessary.
        assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.'
        auto_conds = None
        if voice_samples is not None:
            auto_conditioning, diffusion_conditioning, auto_conds, _ = self.get_conditioning_latents(voice_samples, return_mels=True)
        elif conditioning_latents is not None:
            auto_conditioning, diffusion_conditioning = conditioning_latents
        else:
            auto_conditioning, diffusion_conditioning = self.get_random_conditioning_latents()
        auto_conditioning = auto_conditioning.to(self.device)
        diffusion_conditioning = diffusion_conditioning.to(self.device)

        diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)

        with torch.no_grad():
            samples = []
            num_batches = num_autoregressive_samples // self.autoregressive_batch_size
            stop_mel_token = self.autoregressive.stop_mel_token
            calm_token = 83  # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
            if verbose:
                print("Generating autoregressive samples..")
            if not torch.backends.mps.is_available():
                with self.temporary_cuda(self.autoregressive
                ) as autoregressive, torch.autocast(device_type="cuda", dtype=torch.float16, enabled=self.half):
                    for b in tqdm(range(num_batches), disable=not verbose):
                        codes = autoregressive.inference_speech(auto_conditioning, text_tokens,
                                                                    do_sample=True,
                                                                    top_p=top_p,
                                                                    temperature=temperature,
                                                                    num_return_sequences=self.autoregressive_batch_size,
                                                                    length_penalty=length_penalty,
                                                                    repetition_penalty=repetition_penalty,
                                                                    max_generate_length=max_mel_tokens,
                                                                    **hf_generate_kwargs)
                        padding_needed = max_mel_tokens - codes.shape[1]
                        codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
                        samples.append(codes)
            else:
                with self.temporary_cuda(self.autoregressive) as autoregressive:
                    for b in tqdm(range(num_batches), disable=not verbose):
                        codes = autoregressive.inference_speech(auto_conditioning, text_tokens,
                                                                    do_sample=True,
                                                                    top_p=top_p,
                                                                    temperature=temperature,
                                                                    num_return_sequences=self.autoregressive_batch_size,
                                                                    length_penalty=length_penalty,
                                                                    repetition_penalty=repetition_penalty,
                                                                    max_generate_length=max_mel_tokens,
                                                                    **hf_generate_kwargs)
                        padding_needed = max_mel_tokens - codes.shape[1]
                        codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
                        samples.append(codes)

            clip_results = []
            
            if not torch.backends.mps.is_available():
                with self.temporary_cuda(self.clvp) as clvp, torch.autocast(
                    device_type="cuda" if not torch.backends.mps.is_available() else 'mps', dtype=torch.float16, enabled=self.half
                ):
                    if cvvp_amount > 0:
                        if self.cvvp is None:
                            self.load_cvvp()
                        self.cvvp = self.cvvp.to(self.device)
                    if verbose:
                        if self.cvvp is None:
                            print("Computing best candidates using CLVP")
                        else:
                            print(f"Computing best candidates using CLVP {((1-cvvp_amount) * 100):2.0f}% and CVVP {(cvvp_amount * 100):2.0f}%")
                    for batch in tqdm(samples, disable=not verbose):
                        for i in range(batch.shape[0]):
                            batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
                        if cvvp_amount != 1:
                            clvp_out = clvp(text_tokens.repeat(batch.shape[0], 1), batch, return_loss=False)
                        if auto_conds is not None and cvvp_amount > 0:
                            cvvp_accumulator = 0
                            for cl in range(auto_conds.shape[1]):
                                cvvp_accumulator = cvvp_accumulator + self.cvvp(auto_conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False)
                            cvvp = cvvp_accumulator / auto_conds.shape[1]
                            if cvvp_amount == 1:
                                clip_results.append(cvvp)
                            else:
                                clip_results.append(cvvp * cvvp_amount + clvp_out * (1-cvvp_amount))
                        else:
                            clip_results.append(clvp_out)
                    clip_results = torch.cat(clip_results, dim=0)
                    samples = torch.cat(samples, dim=0)
                    best_results = samples[torch.topk(clip_results, k=k).indices]
            else:
                with self.temporary_cuda(self.clvp) as clvp:
                    if cvvp_amount > 0:
                        if self.cvvp is None:
                            self.load_cvvp()
                        self.cvvp = self.cvvp.to(self.device)
                    if verbose:
                        if self.cvvp is None:
                            print("Computing best candidates using CLVP")
                        else:
                            print(f"Computing best candidates using CLVP {((1-cvvp_amount) * 100):2.0f}% and CVVP {(cvvp_amount * 100):2.0f}%")
                    for batch in tqdm(samples, disable=not verbose):
                        for i in range(batch.shape[0]):
                            batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
                        if cvvp_amount != 1:
                            clvp_out = clvp(text_tokens.repeat(batch.shape[0], 1), batch, return_loss=False)
                        if auto_conds is not None and cvvp_amount > 0:
                            cvvp_accumulator = 0
                            for cl in range(auto_conds.shape[1]):
                                cvvp_accumulator = cvvp_accumulator + self.cvvp(auto_conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False)
                            cvvp = cvvp_accumulator / auto_conds.shape[1]
                            if cvvp_amount == 1:
                                clip_results.append(cvvp)
                            else:
                                clip_results.append(cvvp * cvvp_amount + clvp_out * (1-cvvp_amount))
                        else:
                            clip_results.append(clvp_out)
                    clip_results = torch.cat(clip_results, dim=0)
                    samples = torch.cat(samples, dim=0)
                    best_results = samples[torch.topk(clip_results, k=k).indices]
            if self.cvvp is not None:
                self.cvvp = self.cvvp.cpu()
            del samples

            # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
            # inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
            # results, but will increase memory usage.
            if not torch.backends.mps.is_available():
                with self.temporary_cuda(
                    self.autoregressive
                ) as autoregressive, torch.autocast(
                    device_type="cuda" if not torch.backends.mps.is_available() else 'mps', dtype=torch.float16, enabled=self.half
                ):
                    best_latents = autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1),
                                                    torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), best_results,
                                                    torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device),
                                                    return_latent=True, clip_inputs=False)
                    del auto_conditioning
            else:
                with self.temporary_cuda(
                    self.autoregressive
                ) as autoregressive:
                    best_latents = autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1),
                                                    torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), best_results,
                                                    torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device),
                                                    return_latent=True, clip_inputs=False)
                    del auto_conditioning

            if verbose:
                print("Transforming autoregressive outputs into audio..")
            wav_candidates = []
            if not torch.backends.mps.is_available():
                with self.temporary_cuda(self.diffusion) as diffusion, self.temporary_cuda(
                    self.vocoder
                ) as vocoder:
                    for b in range(best_results.shape[0]):
                        codes = best_results[b].unsqueeze(0)
                        latents = best_latents[b].unsqueeze(0)

                        # Find the first occurrence of the "calm" token and trim the codes to that.
                        ctokens = 0
                        for k in range(codes.shape[-1]):
                            if codes[0, k] == calm_token:
                                ctokens += 1
                            else:
                                ctokens = 0
                            if ctokens > 8:  # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
                                latents = latents[:, :k]
                                break
                        mel = do_spectrogram_diffusion(diffusion, diffuser, latents, diffusion_conditioning, temperature=diffusion_temperature, 
                                                    verbose=verbose)
                        wav = vocoder.inference(mel)
                        wav_candidates.append(wav.cpu())
            else:
                diffusion, vocoder = self.diffusion, self.vocoder
                diffusion_conditioning = diffusion_conditioning.cpu()
                for b in range(best_results.shape[0]):
                    codes = best_results[b].unsqueeze(0).cpu()
                    latents = best_latents[b].unsqueeze(0).cpu()

                    # Find the first occurrence of the "calm" token and trim the codes to that.
                    ctokens = 0
                    for k in range(codes.shape[-1]):
                        if codes[0, k] == calm_token:
                            ctokens += 1
                        else:
                            ctokens = 0
                        if ctokens > 8:  # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
                            latents = latents[:, :k]
                            break
                    mel = do_spectrogram_diffusion(diffusion, diffuser, latents, diffusion_conditioning, temperature=diffusion_temperature, 
                                                verbose=verbose)
                    wav = vocoder.inference(mel)
                    wav_candidates.append(wav.cpu())

            def potentially_redact(clip, text):
                if self.enable_redaction:
                    return self.aligner.redact(clip.squeeze(1), text).unsqueeze(1)
                return clip
            wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates]

            if len(wav_candidates) > 1:
                res = wav_candidates
            else:
                res = wav_candidates[0]

            if return_deterministic_state:
                return res, (deterministic_seed, text, voice_samples, conditioning_latents)
            else:
                return res
    def deterministic_state(self, seed=None):
        """
        Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be
        reproduced.
        """
        seed = int(time()) if seed is None else seed
        torch.manual_seed(seed)
        random.seed(seed)
        # Can't currently set this because of CUBLAS. TODO: potentially enable it if necessary.
        # torch.use_deterministic_algorithms(True)

        return seed