File size: 3,969 Bytes
fca9b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7f8338
 
 
 
fca9b48
 
 
 
 
 
 
 
 
 
d7f8338
35b362a
d7f8338
 
 
fca9b48
e7819ab
fca9b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
840a99d
fca9b48
840a99d
fca9b48
 
 
1370e35
8c2cbbe
840a99d
 
 
 
 
 
 
 
 
fca9b48
707f4d4
30f76f3
 
 
 
 
 
 
 
fca9b48
 
 
 
 
f88a2bc
fca9b48
1370e35
fca9b48
 
 
 
 
 
 
 
 
 
 
 
 
320bb9e
840a99d
 
fca9b48
 
 
 
 
 
 
 
 
707f4d4
 
840a99d
fca9b48
840a99d
fca9b48
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import torch
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.text import split_and_recombine_text
from tortoise.utils.audio import load_audio, load_voice, load_voices

VOICE_OPTIONS = [
    "angie",
    "deniro",
    "freeman",
    "halle",
    "lj",
    "myself",
    "pat2",
    "snakes",
    "tom",
    "daws",
    "dreams",
    "grace",
    "lescault",
    "weaver",
    "applejack",
    "daniel",
    "emma",
    "geralt",
    "jlaw",
    "mol",
    "pat",
    "rainbow",
    "tim_reynolds",
    "atkins",
    "dortice",
    "empire",
    "kennard",
    "mouse",
    "william",
    "jane_eyre",
    "random",  # special option for random voice
]


def inference(
    text,
    script,
    voice,
    voice_b,
    seed,
    split_by_newline,
):
    if text is None or text.strip() == "":
        with open(script.name) as f:
            text = f.read()
        if text.strip() == "":
            raise gr.Error("Please provide either text or script file with content.")

    if split_by_newline == "Yes":
        texts = list(filter(lambda x: x.strip() != "", text.split("\n")))
    else:
        texts = split_and_recombine_text(text)

    voices = [voice]
    if voice_b != "disabled":
        voices.append(voice_b)

    if len(voices) == 1:
        voice_samples, conditioning_latents = load_voice(voice)
    else:
        voice_samples, conditioning_latents = load_voices(voices)

    start_time = time.time()

    # all_parts = []
    for j, text in enumerate(texts):
        for audio_frame in tts.tts_with_preset(
            text,
            voice_samples=voice_samples,
            conditioning_latents=conditioning_latents,
            preset="ultra_fast",
            k=1
        ):
            # print("Time taken: ", time.time() - start_time)
            # all_parts.append(audio_frame)
            yield (24000, audio_frame.cpu().detach().numpy())

    # wav = torch.cat(all_parts, dim=0).unsqueeze(0)
    # print(wav.shape)
    # torchaudio.save("output.wav", wav.cpu(), 24000)
    # yield (None, gr.make_waveform(audio="output.wav",))
def main():
    title = "Tortoise TTS 🐢"
    description = """
    A text-to-speech system which powers lot of organizations in Speech synthesis domain.
    <br/>
    a model with strong multi-voice capabilities, highly realistic prosody and intonation.
    <br/>
    for faster inference, use the 'ultra_fast' preset and duplicate space if you don't want to wait in a queue.
    <br/>
    """
    text = gr.Textbox(
        lines=4,
        label="Text (Provide either text, or upload a newline separated text file below):",
    )
    script = gr.File(label="Upload a text file")

    voice = gr.Dropdown(
        VOICE_OPTIONS, value="jane_eyre", label="Select voice:", type="value"
    )
    voice_b = gr.Dropdown(
        VOICE_OPTIONS,
        value="disabled",
        label="(Optional) Select second voice:",
        type="value",
    )
    split_by_newline = gr.Radio(
        ["Yes", "No"],
        label="Split by newline (If [No], it will automatically try to find relevant splits):",
        type="value",
        value="No",
    )

    output_audio = gr.Audio(label="streaming audio:", streaming=True, autoplay=True)
    # download_audio = gr.Audio(label="dowanload audio:")
    interface = gr.Interface(
        fn=inference,
        inputs=[
            text,
            script,
            voice,
            voice_b,
            split_by_newline,
        ],
        title=title,
        description=description,
        outputs=[output_audio],
    )
    interface.queue().launch()


if __name__ == "__main__":
    tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True)

    with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
        f.write(
            f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n"
        )

    main()