Spaces:
Runtime error
Runtime error
File size: 9,034 Bytes
8fbc209 a7a2242 f16e094 b9d3de1 5854fc5 8fbc209 bfc56dc b9d3de1 335eee6 8fbc209 4ad4a2a 5854fc5 b9d3de1 8fbc209 9bda08e b9d3de1 8fbc209 b9d3de1 5854fc5 4ad4a2a 5854fc5 669c11e b9d3de1 669c11e b9d3de1 5854fc5 b9d3de1 5854fc5 b9d3de1 5854fc5 b9d3de1 669c11e e8a6491 5854fc5 4ad4a2a 8fbc209 5854fc5 b51e863 f16e094 5854fc5 dd24d8c f16e094 5854fc5 c467c9d 3abea23 5854fc5 c467c9d 5854fc5 f16e094 5854fc5 062730b a7a2242 5854fc5 b9d3de1 5854fc5 b9d3de1 a7a2242 5854fc5 a7a2242 062730b 5854fc5 f16e094 8fbc209 2d2f625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
import spaces
import os
import time
import json
import numpy as np
import av
from PIL import Image
import functools
from transformers import AutoProcessor, Idefics2ForConditionalGeneration
from models.conversation import conv_templates
from typing import List
processor = AutoProcessor.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-95k-mantis-2epoch_4096")
model = Idefics2ForConditionalGeneration.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-95k-mantis-2epoch_4096", device_map="auto")
MAX_NUM_FRAMES = 24
conv_template = conv_templates["idefics_2"]
with open("./examples/all_subsets.json", 'r') as f:
examples = json.load(f)
for item in examples:
video_id = item['images'][0].split("_")[0]
item['images'] = [os.path.join("./examples", video_id, x) for x in item['images']]
item['video'] = os.path.join("./examples", item['video'])
with open("./examples/hd.json", 'r') as f:
hd_examples = json.load(f)
for item in hd_examples:
item['video'] = os.path.join("./examples", item['video'])
examples = hd_examples + examples
VIDEO_EVAL_PROMPT = """
Suppose you are an expert in judging and evaluating the quality of AI-generated videos,
please watch the following frames of a given video and see the text prompt for generating the video,
then give scores from 7 different dimensions:
(1) visual quality: the quality of the video in terms of clearness, resolution, brightness, and color
(2) object consistency, the consistency of objects or humans in video
(3) dynamic degree, the degree of dynamic changes
(4) motion smoothness, the smoothness of motion or movements
(5) text-to-video alignment, the alignment between the text prompt and the video content
(6) factual consistency, the consistency of the video content with the common-sense and factual knowledge
(7) overall score, the overall quality of the video
for each dimension, output a number from [1,2,3], in which '1' is 'Bad', '2' is 'Average', '3' is 'Good'.
Here is an output example:
visual quality: 3
object consistency: 2
dynamic degree: 2
motion smoothness: 1
text-to-video alignment: 1
factual consistency: 2
overall score: 1
For this video, the text prompt is "{text_prompt}",
all the frames of video are as follows:
"""
@spaces.GPU
def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs):
global processor, model
model = model.to("cuda") if model.device.type != "cuda" else model
if not images:
images = None
user_role = conv_template.roles[0]
assistant_role = conv_template.roles[1]
idefics_2_message = []
cur_img_idx = 0
cur_vid_idx = 0
all_videos = [x for x in images if isinstance(x, list)]
flatten_images = []
for x in images:
if isinstance(x, list):
flatten_images.extend(x)
else:
flatten_images.append(x)
print(history)
for i, message in enumerate(history):
if message["role"] == user_role:
idefics_2_message.append({
"role": user_role,
"content": []
})
message_text = message["text"]
num_video_tokens_in_text = message_text.count("<video>")
if num_video_tokens_in_text > 0:
for _ in range(num_video_tokens_in_text):
message_text = message_text.replace("<video>", "<image> " * len(all_videos[cur_vid_idx]), 1)
cur_vid_idx += 1
num_image_tokens_in_text = message_text.count("<image>")
if num_image_tokens_in_text > 0:
sub_texts = [x.strip() for x in message_text.split("<image>")]
if sub_texts[0]:
idefics_2_message[-1]["content"].append({"type": "text", "text": sub_texts[0]})
for sub_text in sub_texts[1:]:
idefics_2_message[-1]["content"].append({"type": "image"})
if sub_text:
idefics_2_message.append({
"role": user_role,
"content": [{"type": "text", "text": sub_text}]
})
else:
idefics_2_message[-1]["content"].append({"type": "text", "text": message_text})
elif message["role"] == assistant_role:
if i == len(history) - 1 and not message["text"]:
break
idefics_2_message.append({
"role": assistant_role,
"content": [{"type": "text", "text": message["text"]}]
})
if text:
assert idefics_2_message[-1]["role"] == assistant_role and not idefics_2_message[-1]["content"], "Internal error"
idefics_2_message.append({
"role": user_role,
"content": [{"type": "text", "text": text}]
})
print(idefics_2_message)
prompt = processor.apply_chat_template(idefics_2_message, add_generation_prompt=True)
images = [Image.open(x) if isinstance(x, str) else x for x in flatten_images]
inputs = processor(text=prompt, images=images, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
outputs = model.generate(**inputs, max_new_tokens=1024)
generated_text = processor.decode(outputs[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
return generated_text
def read_video_pyav(container, indices):
'''
Decode the video with PyAV decoder.
Args:
container (av.container.input.InputContainer): PyAV container.
indices (List[int]): List of frame indices to decode.
Returns:
np.ndarray: np array of decoded frames of shape (num_frames, height, width, 3).
'''
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
def eval_video(prompt, video:str):
container = av.open(video)
# sample uniformly 8 frames from the video
total_frames = container.streams.video[0].frames
if total_frames > MAX_NUM_FRAMES:
indices = np.arange(0, total_frames, total_frames / MAX_NUM_FRAMES).astype(int)
else:
indices = np.arange(total_frames)
video_frames = read_video_pyav(container, indices)
frames = [Image.fromarray(x) for x in video_frames]
# resize to 256 x 256
frames = [x.resize((256, 256)) for x in frames]
eval_prompt = VIDEO_EVAL_PROMPT.format(text_prompt=prompt)
eval_prompt += "<video>"
user_role = conv_template.roles[0]
assistant_role = conv_template.roles[1]
chat_messages = [
{
"role": user_role,
"text": eval_prompt
},
{
"role": assistant_role,
"text": ""
}
]
response = generate(None, [frames], chat_messages)
return response
def build_demo():
with gr.Blocks() as demo:
gr.Markdown("""
## Video Evaluation
upload a video along with a text prompt when generating the video, this model will evaluate the video's quality from 7 different dimensions.
""")
with gr.Row():
video = gr.Video(width=500, label="Video")
with gr.Column():
eval_prompt_template = gr.Textbox(VIDEO_EVAL_PROMPT.strip(' \n'), label="Evaluation Prompt Template", interactive=False, max_lines=26)
video_prompt = gr.Textbox(label="Text Prompt", lines=1)
with gr.Row():
eval_button = gr.Button("Evaluate Video")
clear_button = gr.ClearButton([video, video_prompt])
eval_result = gr.Textbox(label="Evaluation result", interactive=False, lines=7)
eval_button.click(
eval_video, [video_prompt, video], [eval_result]
)
dummy_id = gr.Textbox("id", label="id", visible=False, min_width=50)
dummy_output = gr.Textbox("reference score", label="reference scores", visible=False, lines=7)
gr.Examples(
examples=
[
[
item['id'],
item['prompt'],
item['video'],
item['conversations'][1]['value']
] for item in examples
],
inputs=[dummy_id, video_prompt, video, dummy_output],
)
# gr.Markdown("""
# ## Citation
# ```
# @article{jiang2024mantis,
# title={MANTIS: Interleaved Multi-Image Instruction Tuning},
# author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu},
# journal={arXiv preprint arXiv:2405.01483},
# year={2024}
# }
# ```""")
return demo
if __name__ == "__main__":
demo = build_demo()
demo.launch(share=True) |