File size: 5,136 Bytes
f54eb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch

from audiocraft.modules.rope import RotaryEmbedding
from audiocraft.modules.transformer import StreamingTransformer, set_efficient_attention_backend


def test_rope():
    set_efficient_attention_backend('xformers')
    B, T, H, C = 8, 75, 16, 128

    rope = RotaryEmbedding(dim=C)
    xq = torch.rand((B, T, H, C))
    xk = torch.rand((B, T, H, C))
    xq_out, xk_out = rope.rotate_qk(xq, xk, start=7)

    assert list(xq_out.shape) == [B, T, H, C]
    assert list(xk_out.shape) == [B, T, H, C]


def test_rope_io_dtypes():
    set_efficient_attention_backend('xformers')
    B, T, H, C = 8, 75, 16, 128

    rope_32 = RotaryEmbedding(dim=C, dtype=torch.float32)
    rope_64 = RotaryEmbedding(dim=C, dtype=torch.float64)

    # Test bfloat16 inputs w/ both 32 and 64 precision rope.
    xq_16 = torch.rand((B, T, H, C)).to(torch.bfloat16)
    xk_16 = torch.rand((B, T, H, C)).to(torch.bfloat16)
    xq_out, xk_out = rope_32.rotate_qk(xq_16, xk_16)
    assert xq_out.dtype == torch.bfloat16
    xq_out, xk_out = rope_64.rotate_qk(xq_16, xk_16)
    assert xq_out.dtype == torch.bfloat16

    # Test float32 inputs w/ both 32 and 64 precision rope.
    xq_32 = torch.rand((B, T, H, C)).to(torch.float32)
    xk_32 = torch.rand((B, T, H, C)).to(torch.float32)
    xq_out, xk_out = rope_32.rotate_qk(xq_32, xk_32)
    assert xq_out.dtype == torch.float32
    xq_out, xk_out = rope_64.rotate_qk(xq_32, xk_32)
    assert xq_out.dtype == torch.float32


def test_transformer_with_rope():
    set_efficient_attention_backend('xformers')
    torch.manual_seed(1234)
    for pos in ['rope', 'sin_rope']:
        tr = StreamingTransformer(
            16, 4, 2, custom=True, dropout=0., layer_scale=0.1,
            positional_embedding=pos)
        tr.eval()
        steps = 12
        x = torch.randn(3, steps, 16)

        out = tr(x)
        assert list(out.shape) == list(x.shape)


@torch.no_grad()
def test_rope_streaming():
    set_efficient_attention_backend('xformers')
    torch.manual_seed(1234)
    tr = StreamingTransformer(
        16, 4, 2, causal=True, dropout=0.,
        custom=True, positional_embedding='rope')
    tr.eval()
    steps = 12
    x = torch.randn(3, steps, 16)

    ref = tr(x)

    with tr.streaming():
        outs = []
        frame_sizes = [1] * steps

        for frame_size in frame_sizes:
            frame = x[:, :frame_size]
            x = x[:, frame_size:]
            outs.append(tr(frame))

    out = torch.cat(outs, dim=1)
    assert list(out.shape) == [3, steps, 16]
    delta = torch.norm(out - ref) / torch.norm(out)
    assert delta < 1e-6, delta


@torch.no_grad()
def test_rope_streaming_past_context():
    set_efficient_attention_backend('xformers')
    torch.manual_seed(1234)

    for context in [None, 10]:
        tr = StreamingTransformer(
            16, 4, 1 if context else 2,
            causal=True, past_context=context, custom=True,
            dropout=0., positional_embedding='rope')
        tr.eval()

        steps = 20
        x = torch.randn(3, steps, 16)
        ref = tr(x)

        with tr.streaming():
            outs = []
            frame_sizes = [1] * steps

            for frame_size in frame_sizes:
                frame = x[:, :frame_size]
                x = x[:, frame_size:]
                outs.append(tr(frame))

        out = torch.cat(outs, dim=1)
        assert list(out.shape) == [3, steps, 16]
        delta = torch.norm(out - ref) / torch.norm(out)
        assert delta < 1e-6, delta


def test_rope_memory_efficient():
    set_efficient_attention_backend('xformers')
    torch.manual_seed(1234)
    tr = StreamingTransformer(
        16, 4, 2, custom=True, dropout=0., layer_scale=0.1,
        positional_embedding='rope')
    tr_mem_efficient = StreamingTransformer(
        16, 4, 2, dropout=0., memory_efficient=True, layer_scale=0.1,
        positional_embedding='rope')
    tr_mem_efficient.load_state_dict(tr.state_dict())
    tr.eval()
    steps = 12
    x = torch.randn(3, steps, 16)

    with torch.no_grad():
        y = tr(x)
        y2 = tr_mem_efficient(x)
        # Check at float precision b/c this is the rope default.
        assert torch.allclose(y, y2, atol=1e-7), (y - y2).norm()


def test_rope_with_xpos():
    set_efficient_attention_backend('xformers')
    B, T, H, C = 8, 75, 16, 128

    rope = RotaryEmbedding(dim=C, xpos=True)
    xq = torch.rand((B, T, H, C))
    xk = torch.rand((B, T, H, C))
    xq_out, xk_out = rope.rotate_qk(xq, xk, start=7)

    assert list(xq_out.shape) == [B, T, H, C]
    assert list(xk_out.shape) == [B, T, H, C]


def test_positional_scale():
    set_efficient_attention_backend('xformers')
    B, T, H, C = 8, 75, 16, 128

    rope = RotaryEmbedding(dim=C, xpos=True, scale=0.0)
    xq = torch.rand((B, T, H, C))
    xk = torch.rand((B, T, H, C))
    xq_out, xk_out = rope.rotate_qk(xq, xk, start=7)

    assert torch.allclose(xq, xq_out)
    assert torch.allclose(xk, xk_out)