Spaces:
Sleeping
Sleeping
Marathon23
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import time
|
2 |
import gradio as gr # 確認已正確導入 gradio
|
3 |
-
import openai
|
4 |
import os
|
5 |
import requests
|
6 |
import json
|
@@ -13,14 +12,6 @@ if not api_key:
|
|
13 |
# OpenAI API key
|
14 |
openai_api_key = api_key
|
15 |
|
16 |
-
# 將 Gradio 的歷史紀錄轉換為 OpenAI 格式
|
17 |
-
def transform_history(history):
|
18 |
-
new_history = []
|
19 |
-
for chat in history:
|
20 |
-
new_history.append({"role": "user", "content": chat[0]})
|
21 |
-
new_history.append({"role": "assistant", "content": chat[1]})
|
22 |
-
return new_history
|
23 |
-
|
24 |
# 檢查是否為與調酒相關的問題
|
25 |
def is_related_to_bars(message):
|
26 |
keywords = [
|
@@ -38,9 +29,7 @@ def response(message, history):
|
|
38 |
print(f"問題與調酒無關: {message}")
|
39 |
return "抱歉,我只能回答與調酒、酒吧、酒類相關的問題。" # In Traditional Chinese
|
40 |
|
41 |
-
#
|
42 |
-
conversation_history = transform_history(history)
|
43 |
-
|
44 |
url = "https://api.openai.com/v1/chat/completions"
|
45 |
headers = {
|
46 |
"Content-Type": "application/json",
|
@@ -49,52 +38,33 @@ def response(message, history):
|
|
49 |
|
50 |
# 設置初始的 prompt_instruction
|
51 |
prompt_instruction = """
|
52 |
-
|
53 |
"""
|
54 |
prompt_to_gpt = prompt_instruction + message
|
55 |
|
56 |
-
# 新增至 conversation_history
|
57 |
-
conversation_history.append({"role": "system", "content": prompt_to_gpt})
|
58 |
-
|
59 |
# 設置請求的數據
|
60 |
data = {
|
61 |
-
"model": "gpt-
|
62 |
-
"messages":
|
63 |
"max_tokens": 200 # 控制生成的最大令牌數
|
64 |
}
|
65 |
|
66 |
-
# 發送請求到 OpenAI API
|
67 |
try:
|
68 |
response = requests.post(url, headers=headers, data=json.dumps(data))
|
69 |
-
response.raise_for_status() #
|
70 |
response_json = response.json()
|
71 |
|
72 |
-
# Debugging:
|
73 |
print("API Response:", response_json)
|
74 |
|
75 |
-
# 提取模型的回應並加入歷史紀錄
|
76 |
if 'choices' in response_json and len(response_json['choices']) > 0:
|
77 |
model_response = response_json['choices'][0]['message']['content']
|
78 |
-
|
79 |
-
|
80 |
-
# 逐字回傳生成的文字,實現打字機效果
|
81 |
-
for i in range(len(model_response)):
|
82 |
-
time.sleep(0.05) # 每個字符間隔 0.05 秒
|
83 |
-
yield model_response[: i+1]
|
84 |
else:
|
85 |
-
|
86 |
-
except
|
87 |
-
print(f"
|
88 |
-
|
89 |
-
except requests.exceptions.ConnectionError as errc:
|
90 |
-
print(f"Error Connecting: {errc}")
|
91 |
-
yield f"Error Connecting: {errc}"
|
92 |
-
except requests.exceptions.Timeout as errt:
|
93 |
-
print(f"Timeout Error: {errt}")
|
94 |
-
yield f"Timeout Error: {errt}"
|
95 |
-
except requests.exceptions.RequestException as err:
|
96 |
-
print(f"Request Exception: {err}")
|
97 |
-
yield f"Request Exception: {err}"
|
98 |
|
99 |
# 初始訊息
|
100 |
def initial_message():
|
|
|
1 |
import time
|
2 |
import gradio as gr # 確認已正確導入 gradio
|
|
|
3 |
import os
|
4 |
import requests
|
5 |
import json
|
|
|
12 |
# OpenAI API key
|
13 |
openai_api_key = api_key
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# 檢查是否為與調酒相關的問題
|
16 |
def is_related_to_bars(message):
|
17 |
keywords = [
|
|
|
29 |
print(f"問題與調酒無關: {message}")
|
30 |
return "抱歉,我只能回答與調酒、酒吧、酒類相關的問題。" # In Traditional Chinese
|
31 |
|
32 |
+
# 呼叫 OpenAI API
|
|
|
|
|
33 |
url = "https://api.openai.com/v1/chat/completions"
|
34 |
headers = {
|
35 |
"Content-Type": "application/json",
|
|
|
38 |
|
39 |
# 設置初始的 prompt_instruction
|
40 |
prompt_instruction = """
|
41 |
+
你是李宗諺的專業小助教,名字叫做 '小李子',要以專業、冷淡但是非常有禮貌的口氣,與用戶互動並解答問題:
|
42 |
"""
|
43 |
prompt_to_gpt = prompt_instruction + message
|
44 |
|
|
|
|
|
|
|
45 |
# 設置請求的數據
|
46 |
data = {
|
47 |
+
"model": "gpt-4o", # 使用 GPT-4 或 gpt-3.5-turbo
|
48 |
+
"messages": [{"role": "system", "content": prompt_to_gpt}],
|
49 |
"max_tokens": 200 # 控制生成的最大令牌數
|
50 |
}
|
51 |
|
|
|
52 |
try:
|
53 |
response = requests.post(url, headers=headers, data=json.dumps(data))
|
54 |
+
response.raise_for_status() # 檢查是否有錯誤
|
55 |
response_json = response.json()
|
56 |
|
57 |
+
# Debugging: 打印 API 回應
|
58 |
print("API Response:", response_json)
|
59 |
|
|
|
60 |
if 'choices' in response_json and len(response_json['choices']) > 0:
|
61 |
model_response = response_json['choices'][0]['message']['content']
|
62 |
+
return model_response
|
|
|
|
|
|
|
|
|
|
|
63 |
else:
|
64 |
+
return "Error: No response from the model."
|
65 |
+
except Exception as e:
|
66 |
+
print(f"API Error: {e}")
|
67 |
+
return f"API Error: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# 初始訊息
|
70 |
def initial_message():
|