File size: 4,296 Bytes
9ab2b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b920220
9ab2b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269a39e
9ab2b8f
 
269a39e
9ab2b8f
 
 
 
 
269a39e
9ab2b8f
 
269a39e
9ab2b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269a39e
9ab2b8f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from huggingface_hub import InferenceClient
import gradio as gr
import os

API_URL = {
    "Mistral" : "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3",
    "Mixtral" : "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1",
    "Mathstral" : "https://api-inference.huggingface.co/models/mistralai/mathstral-7B-v0.1",
}

HF_TOKEN = os.environ['HF_TOKEN']

mistralClient = InferenceClient(
    API_URL["Mistral"],
    headers = {"Authorization" : f"Bearer {HF_TOKEN}"},
)

mixtralClient = InferenceClient(
    model = API_URL["Mixtral"],
    headers = {"Authorization" : f"Bearer {HF_TOKEN}"},
)

mathstralClient = InferenceClient(
    model = API_URL["Mathstral"],
    headers = {"Authorization" : f"Bearer {HF_TOKEN}"},
)

def format_prompt(message, history):
  prompt = "<s>"

  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95,
             repetition_penalty=1.0, model = "Mathstral"):
    # Selecting model to be used
    if(model == "Mistral"):
      client = mistralClient
    elif(model == "Mixstral"):
      client = mixtralClient
    elif(model == "Mathstral"):
      client = mathstralClient

    
    temperature = float(temperature) # Generation arguments
    if temperature < 1e-2:
        temperature = 1e-2
        
    top_p = float(top_p)
    
    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    
    formatted_prompt = format_prompt(prompt, history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        output += response.token.text
        yield output
    return output

additional_inputs=[
    gr.Slider(
        label="Temperature",
        value=0.3,
        minimum=0.0,
        maximum=1.0,
        step=0.1,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=1024,
        minimum=0,
        maximum=4096,
        step=256,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),
        gr.Dropdown(
        choices = ["Mistral","Mixtral", "Mathstral"],
        value = "Mathstral",
        label = "Le modèle à utiliser",
        interactive=True,
        info = "Mistral : pour des conversations génériques, "+ 
               "Mixtral : conversations plus rapides et plus performantes, "+ 
               "Mathstral : raisonnement mathématiques et scientifique"
    ),
]

css = """
  #mkd {
    height: 500px;
    overflow: auto;
    border: 1px solid #ccc;
  }
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1><center>Mathstral Test</center><h1>")
    gr.HTML("<h3><center>Dans cette démo, vous pouvez poser des questions mathématiques et scientifiques à Mathstral. 🧮</center><h3>")
    gr.ChatInterface(
        generate,
        additional_inputs=additional_inputs,
        theme = gr.themes.Soft(),
        cache_examples=False,
        examples=[ [l.strip()] for l in open("exercices.md").readlines()],
        chatbot = gr.Chatbot(
            latex_delimiters=[
                {"left" : "$$", "right": "$$", "display": True },
                {"left" : "\\[", "right": "\\]", "display": True },
                {"left" : "\\(", "right": "\\)", "display": False },
                {"left": "$", "right": "$", "display": False }
                ]
            )
    )

demo.queue(max_size=100).launch(debug=True)