mathstral_test / app.py
MarcdeFalco's picture
Upload folder using huggingface_hub
269a39e verified
raw
history blame
4.29 kB
from huggingface_hub import InferenceClient
import gradio as gr
import os
API_URL = {
"Mistral" : "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3",
"Mixtral" : "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1",
"Mathstral" : "https://api-inference.huggingface.co/models/mistralai/mathstral-7B-v0.1",
}
HF_TOKEN = os.environ['HF_TOKEN']
mistralClient = InferenceClient(
API_URL["Mistral"],
headers = {"Authorization" : f"Bearer {HF_TOKEN}"},
)
mixtralClient = InferenceClient(
model = API_URL["Mixtral"],
headers = {"Authorization" : f"Bearer {HF_TOKEN}"},
)
mathstralClient = InferenceClient(
model = API_URL["Mathstral"],
headers = {"Authorization" : f"Bearer {HF_TOKEN}"},
)
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95,
repetition_penalty=1.0, model = "Mathstral"):
# Selecting model to be used
if(model == "Mistral"):
client = mistralClient
elif(model == "Mixstral"):
client = mixtralClient
elif(model == "Mathstral"):
client = mixtralClient
temperature = float(temperature) # Generation arguments
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.3,
minimum=0.0,
maximum=1.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1024,
minimum=0,
maximum=4096,
step=256,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
),
gr.Dropdown(
choices = ["Mistral","Mixtral", "Mathstral"],
value = "Mathstral",
label = "Le modèle à utiliser",
interactive=True,
info = "Mistral : pour des conversations génériques, "+
"Mixtral : conversations plus rapides et plus performantes, "+
"Mathstral : raisonnement mathématiques et scientifique"
),
]
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Mathstral Test</center><h1>")
gr.HTML("<h3><center>Dans cette démo, vous pouvez poser des questions mathématiques et scientifiques à Mathstral. 🧮</center><h3>")
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
theme = gr.themes.Soft(),
cache_examples=False,
examples=[ [l.strip()] for l in open("exercices.md").readlines()],
chatbot = gr.Chatbot(
latex_delimiters=[
{"left" : "$$", "right": "$$", "display": True },
{"left" : "\\[", "right": "\\]", "display": True },
{"left" : "\\(", "right": "\\)", "display": False },
{"left": "$", "right": "$", "display": False }
]
)
)
demo.queue(max_size=100).launch(debug=True)