Spaces:
Running
Running
File size: 4,059 Bytes
e3c945a 6e41012 e3c945a 6e41012 e3c945a 29345cc 6e41012 5e02eab 9847bf2 6e41012 b637f4d e3c945a 5199f9b e3c945a c86b4c1 9847bf2 c86b4c1 2a42a98 e3c945a 6e41012 586d9bc b29c6aa e3c945a 6e41012 e3c945a b29c6aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import io
import os
os.system("wget -P hubert/ https://huggingface.co/spaces/MarcusSu1216/XingTong/blob/main/hubert/checkpoint_best_legacy_500.pt")
import gradio as gr
import librosa
import numpy as np
import soundfile
from inference.infer_tool import Svc
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
model = Svc("logs/44k/G_55000.pth", "configs/config.json", cluster_model_path="logs/44k/kmeans_10000.pt")
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, noise_scale):
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = input_audio
# print(audio.shape,sampling_rate)
duration = audio.shape[0] / sampling_rate
if duration > 100:
return "请上传小于100s的音频,需要转换长音频请本地进行转换", None
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
print(audio.shape)
out_wav_path = "temp.wav"
soundfile.write(out_wav_path, audio, 16000, format="wav")
print( cluster_ratio, auto_f0, noise_scale)
out_audio, out_sr = model.infer(sid, vc_transform, out_wav_path,
cluster_infer_ratio=cluster_ratio,
auto_predict_f0=auto_f0,
noice_scale=noise_scale
)
return "转换成功", (44100, out_audio.numpy())
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("介绍"):
gr.Markdown(value="""
星瞳_Official的语音在线合成,基于so-vits-svc-4.0生成。\n
使用须知:\n
1、请使用伴奏和声去除干净的人声素材,时长小于100秒,格式为mp3或wav。\n
2、去除伴奏推荐使用UVR5软件,B站上有详细教程。\n
3、条件不支持推荐使用以下几个去伴奏的网站:\n
https://vocalremover.org/zh/\n
https://tuanziai.com/vocal-remover/upload\n
https://www.lalal.ai/zh-hans/\n
4、在线版服务器为2核16G免费版,转换效率较慢请耐心等待。\n
5、使用此模型请标注作者:一闪一闪小星瞳,以及该项目地址。\n
6、有问题可以在B站私聊我反馈:https://space.bilibili.com/38523418\n
7、语音模型转换出的音频请勿用于商业化。
""")
spks = list(model.spk2id.keys())
sid = gr.Dropdown(label="音色", choices=["XT3.2"], value="XT3.2")
vc_input3 = gr.Audio(label="上传音频(长度建议小于100秒)")
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False)
noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
vc_submit = gr.Button("转换", variant="primary")
vc_output1 = gr.Textbox(label="Output Message")
vc_output2 = gr.Audio(label="Output Audio")
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, noise_scale], [vc_output1, vc_output2])
app.launch()
|