Spaces:
Running
Running
MarcusSu1216
commited on
Commit
•
50caebe
1
Parent(s):
7be9abd
Update data_utils.py
Browse files- data_utils.py +2 -15
data_utils.py
CHANGED
@@ -23,7 +23,7 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
23 |
3) computes spectrograms from audio files.
|
24 |
"""
|
25 |
|
26 |
-
def __init__(self, audiopaths, hparams
|
27 |
self.audiopaths = load_filepaths_and_text(audiopaths)
|
28 |
self.max_wav_value = hparams.data.max_wav_value
|
29 |
self.sampling_rate = hparams.data.sampling_rate
|
@@ -37,10 +37,6 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
37 |
|
38 |
random.seed(1234)
|
39 |
random.shuffle(self.audiopaths)
|
40 |
-
|
41 |
-
self.all_in_mem = all_in_mem
|
42 |
-
if self.all_in_mem:
|
43 |
-
self.cache = [self.get_audio(p[0]) for p in self.audiopaths]
|
44 |
|
45 |
def get_audio(self, filename):
|
46 |
filename = filename.replace("\\", "/")
|
@@ -51,8 +47,6 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
51 |
audio_norm = audio / self.max_wav_value
|
52 |
audio_norm = audio_norm.unsqueeze(0)
|
53 |
spec_filename = filename.replace(".wav", ".spec.pt")
|
54 |
-
|
55 |
-
# Ideally, all data generated after Mar 25 should have .spec.pt
|
56 |
if os.path.exists(spec_filename):
|
57 |
spec = torch.load(spec_filename)
|
58 |
else:
|
@@ -79,10 +73,6 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
79 |
assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length
|
80 |
spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin]
|
81 |
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
82 |
-
|
83 |
-
return c, f0, spec, audio_norm, spk, uv
|
84 |
-
|
85 |
-
def random_slice(self, c, f0, spec, audio_norm, spk, uv):
|
86 |
# if spec.shape[1] < 30:
|
87 |
# print("skip too short audio:", filename)
|
88 |
# return None
|
@@ -95,10 +85,7 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
95 |
return c, f0, spec, audio_norm, spk, uv
|
96 |
|
97 |
def __getitem__(self, index):
|
98 |
-
|
99 |
-
return self.random_slice(*self.cache[index])
|
100 |
-
else:
|
101 |
-
return self.random_slice(*self.get_audio(self.audiopaths[index][0]))
|
102 |
|
103 |
def __len__(self):
|
104 |
return len(self.audiopaths)
|
|
|
23 |
3) computes spectrograms from audio files.
|
24 |
"""
|
25 |
|
26 |
+
def __init__(self, audiopaths, hparams):
|
27 |
self.audiopaths = load_filepaths_and_text(audiopaths)
|
28 |
self.max_wav_value = hparams.data.max_wav_value
|
29 |
self.sampling_rate = hparams.data.sampling_rate
|
|
|
37 |
|
38 |
random.seed(1234)
|
39 |
random.shuffle(self.audiopaths)
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def get_audio(self, filename):
|
42 |
filename = filename.replace("\\", "/")
|
|
|
47 |
audio_norm = audio / self.max_wav_value
|
48 |
audio_norm = audio_norm.unsqueeze(0)
|
49 |
spec_filename = filename.replace(".wav", ".spec.pt")
|
|
|
|
|
50 |
if os.path.exists(spec_filename):
|
51 |
spec = torch.load(spec_filename)
|
52 |
else:
|
|
|
73 |
assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length
|
74 |
spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin]
|
75 |
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
|
|
|
|
|
|
|
|
76 |
# if spec.shape[1] < 30:
|
77 |
# print("skip too short audio:", filename)
|
78 |
# return None
|
|
|
85 |
return c, f0, spec, audio_norm, spk, uv
|
86 |
|
87 |
def __getitem__(self, index):
|
88 |
+
return self.get_audio(self.audiopaths[index][0])
|
|
|
|
|
|
|
89 |
|
90 |
def __len__(self):
|
91 |
return len(self.audiopaths)
|