MarcusSu1216 commited on
Commit
cf62053
·
1 Parent(s): 8b29255

Upload 7 files

Browse files
inference/__init__.py ADDED
File without changes
inference/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (127 Bytes). View file
 
inference/__pycache__/infer_tool.cpython-38.pyc ADDED
Binary file (10.4 kB). View file
 
inference/__pycache__/slicer.cpython-38.pyc ADDED
Binary file (3.83 kB). View file
 
inference/infer_tool.py ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import io
3
+ import json
4
+ import logging
5
+ import os
6
+ import time
7
+ from pathlib import Path
8
+ from inference import slicer
9
+
10
+ import librosa
11
+ import numpy as np
12
+ # import onnxruntime
13
+ import parselmouth
14
+ import soundfile
15
+ import torch
16
+ import hashlib
17
+ import io
18
+ import json
19
+ import logging
20
+ import os
21
+ import time
22
+ from pathlib import Path
23
+ from inference import slicer
24
+
25
+ import librosa
26
+ import numpy as np
27
+ # import onnxruntime
28
+ import parselmouth
29
+ import soundfile
30
+ import torch
31
+ import torchaudio
32
+
33
+ import cluster
34
+ from hubert import hubert_model
35
+ import utils
36
+ from models import SynthesizerTrn
37
+
38
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
39
+
40
+
41
+ def read_temp(file_name):
42
+ if not os.path.exists(file_name):
43
+ with open(file_name, "w") as f:
44
+ f.write(json.dumps({"info": "temp_dict"}))
45
+ return {}
46
+ else:
47
+ try:
48
+ with open(file_name, "r") as f:
49
+ data = f.read()
50
+ data_dict = json.loads(data)
51
+ if os.path.getsize(file_name) > 50 * 1024 * 1024:
52
+ f_name = file_name.replace("\\", "/").split("/")[-1]
53
+ print(f"clean {f_name}")
54
+ for wav_hash in list(data_dict.keys()):
55
+ if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
56
+ del data_dict[wav_hash]
57
+ except Exception as e:
58
+ print(e)
59
+ print(f"{file_name} error,auto rebuild file")
60
+ data_dict = {"info": "temp_dict"}
61
+ return data_dict
62
+
63
+
64
+ def write_temp(file_name, data):
65
+ with open(file_name, "w") as f:
66
+ f.write(json.dumps(data))
67
+
68
+
69
+ def timeit(func):
70
+ def run(*args, **kwargs):
71
+ t = time.time()
72
+ res = func(*args, **kwargs)
73
+ print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
74
+ return res
75
+
76
+ return run
77
+
78
+
79
+ def format_wav(audio_path):
80
+ if Path(audio_path).suffix == '.wav':
81
+ return
82
+ raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
83
+ soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
84
+
85
+
86
+ def get_end_file(dir_path, end):
87
+ file_lists = []
88
+ for root, dirs, files in os.walk(dir_path):
89
+ files = [f for f in files if f[0] != '.']
90
+ dirs[:] = [d for d in dirs if d[0] != '.']
91
+ for f_file in files:
92
+ if f_file.endswith(end):
93
+ file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
94
+ return file_lists
95
+
96
+
97
+ def get_md5(content):
98
+ return hashlib.new("md5", content).hexdigest()
99
+
100
+ def fill_a_to_b(a, b):
101
+ if len(a) < len(b):
102
+ for _ in range(0, len(b) - len(a)):
103
+ a.append(a[0])
104
+
105
+ def mkdir(paths: list):
106
+ for path in paths:
107
+ if not os.path.exists(path):
108
+ os.mkdir(path)
109
+
110
+ def pad_array(arr, target_length):
111
+ current_length = arr.shape[0]
112
+ if current_length >= target_length:
113
+ return arr
114
+ else:
115
+ pad_width = target_length - current_length
116
+ pad_left = pad_width // 2
117
+ pad_right = pad_width - pad_left
118
+ padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0))
119
+ return padded_arr
120
+
121
+ def split_list_by_n(list_collection, n, pre=0):
122
+ for i in range(0, len(list_collection), n):
123
+ yield list_collection[i-pre if i-pre>=0 else i: i + n]
124
+
125
+
126
+ class F0FilterException(Exception):
127
+ pass
128
+
129
+ class Svc(object):
130
+ def __init__(self, net_g_path, config_path,
131
+ device=None,
132
+ cluster_model_path="logs/44k/kmeans_10000.pt",
133
+ nsf_hifigan_enhance = False
134
+ ):
135
+ self.net_g_path = net_g_path
136
+ if device is None:
137
+ self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
138
+ else:
139
+ self.dev = torch.device(device)
140
+ self.net_g_ms = None
141
+ self.hps_ms = utils.get_hparams_from_file(config_path)
142
+ self.target_sample = self.hps_ms.data.sampling_rate
143
+ self.hop_size = self.hps_ms.data.hop_length
144
+ self.spk2id = self.hps_ms.spk
145
+ self.nsf_hifigan_enhance = nsf_hifigan_enhance
146
+ # 加载hubert
147
+ self.hubert_model = utils.get_hubert_model().to(self.dev)
148
+ self.load_model()
149
+ if os.path.exists(cluster_model_path):
150
+ self.cluster_model = cluster.get_cluster_model(cluster_model_path)
151
+ if self.nsf_hifigan_enhance:
152
+ from modules.enhancer import Enhancer
153
+ self.enhancer = Enhancer('nsf-hifigan', 'pretrain/nsf_hifigan/model',device=self.dev)
154
+
155
+ def load_model(self):
156
+ # 获取模型配置
157
+ self.net_g_ms = SynthesizerTrn(
158
+ self.hps_ms.data.filter_length // 2 + 1,
159
+ self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
160
+ **self.hps_ms.model)
161
+ _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
162
+ if "half" in self.net_g_path and torch.cuda.is_available():
163
+ _ = self.net_g_ms.half().eval().to(self.dev)
164
+ else:
165
+ _ = self.net_g_ms.eval().to(self.dev)
166
+
167
+
168
+
169
+ def get_unit_f0(self, in_path, tran, cluster_infer_ratio, speaker, f0_filter ,F0_mean_pooling):
170
+
171
+ wav, sr = librosa.load(in_path, sr=self.target_sample)
172
+
173
+ if F0_mean_pooling == True:
174
+ f0, uv = utils.compute_f0_uv_torchcrepe(torch.FloatTensor(wav), sampling_rate=self.target_sample, hop_length=self.hop_size,device=self.dev)
175
+ if f0_filter and sum(f0) == 0:
176
+ raise F0FilterException("未检测到人声")
177
+ f0 = torch.FloatTensor(list(f0))
178
+ uv = torch.FloatTensor(list(uv))
179
+ if F0_mean_pooling == False:
180
+ f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
181
+ if f0_filter and sum(f0) == 0:
182
+ raise F0FilterException("未检测到人声")
183
+ f0, uv = utils.interpolate_f0(f0)
184
+ f0 = torch.FloatTensor(f0)
185
+ uv = torch.FloatTensor(uv)
186
+
187
+ f0 = f0 * 2 ** (tran / 12)
188
+ f0 = f0.unsqueeze(0).to(self.dev)
189
+ uv = uv.unsqueeze(0).to(self.dev)
190
+
191
+ wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000)
192
+ wav16k = torch.from_numpy(wav16k).to(self.dev)
193
+ c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
194
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
195
+
196
+ if cluster_infer_ratio !=0:
197
+ cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
198
+ cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
199
+ c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
200
+
201
+ c = c.unsqueeze(0)
202
+ return c, f0, uv
203
+
204
+ def infer(self, speaker, tran, raw_path,
205
+ cluster_infer_ratio=0,
206
+ auto_predict_f0=False,
207
+ noice_scale=0.4,
208
+ f0_filter=False,
209
+ F0_mean_pooling=False,
210
+ enhancer_adaptive_key = 0
211
+ ):
212
+
213
+ speaker_id = self.spk2id.__dict__.get(speaker)
214
+ if not speaker_id and type(speaker) is int:
215
+ if len(self.spk2id.__dict__) >= speaker:
216
+ speaker_id = speaker
217
+ sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
218
+ c, f0, uv = self.get_unit_f0(raw_path, tran, cluster_infer_ratio, speaker, f0_filter,F0_mean_pooling)
219
+ if "half" in self.net_g_path and torch.cuda.is_available():
220
+ c = c.half()
221
+ with torch.no_grad():
222
+ start = time.time()
223
+ audio = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)[0,0].data.float()
224
+ if self.nsf_hifigan_enhance:
225
+ audio, _ = self.enhancer.enhance(
226
+ audio[None,:],
227
+ self.target_sample,
228
+ f0[:,:,None],
229
+ self.hps_ms.data.hop_length,
230
+ adaptive_key = enhancer_adaptive_key)
231
+ use_time = time.time() - start
232
+ print("vits use time:{}".format(use_time))
233
+ return audio, audio.shape[-1]
234
+
235
+ def clear_empty(self):
236
+ # 清理显存
237
+ torch.cuda.empty_cache()
238
+
239
+ def slice_inference(self,
240
+ raw_audio_path,
241
+ spk,
242
+ tran,
243
+ slice_db,
244
+ cluster_infer_ratio,
245
+ auto_predict_f0,
246
+ noice_scale,
247
+ pad_seconds=0.5,
248
+ clip_seconds=0,
249
+ lg_num=0,
250
+ lgr_num =0.75,
251
+ F0_mean_pooling = False,
252
+ enhancer_adaptive_key = 0
253
+ ):
254
+ wav_path = raw_audio_path
255
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
256
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
257
+ per_size = int(clip_seconds*audio_sr)
258
+ lg_size = int(lg_num*audio_sr)
259
+ lg_size_r = int(lg_size*lgr_num)
260
+ lg_size_c_l = (lg_size-lg_size_r)//2
261
+ lg_size_c_r = lg_size-lg_size_r-lg_size_c_l
262
+ lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0
263
+
264
+ audio = []
265
+ for (slice_tag, data) in audio_data:
266
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
267
+ # padd
268
+ length = int(np.ceil(len(data) / audio_sr * self.target_sample))
269
+ if slice_tag:
270
+ print('jump empty segment')
271
+ _audio = np.zeros(length)
272
+ audio.extend(list(pad_array(_audio, length)))
273
+ continue
274
+ if per_size != 0:
275
+ datas = split_list_by_n(data, per_size,lg_size)
276
+ else:
277
+ datas = [data]
278
+ for k,dat in enumerate(datas):
279
+ per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds!=0 else length
280
+ if clip_seconds!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
281
+ # padd
282
+ pad_len = int(audio_sr * pad_seconds)
283
+ dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
284
+ raw_path = io.BytesIO()
285
+ soundfile.write(raw_path, dat, audio_sr, format="wav")
286
+ raw_path.seek(0)
287
+ out_audio, out_sr = self.infer(spk, tran, raw_path,
288
+ cluster_infer_ratio=cluster_infer_ratio,
289
+ auto_predict_f0=auto_predict_f0,
290
+ noice_scale=noice_scale,
291
+ F0_mean_pooling = F0_mean_pooling,
292
+ enhancer_adaptive_key = enhancer_adaptive_key
293
+ )
294
+ _audio = out_audio.cpu().numpy()
295
+ pad_len = int(self.target_sample * pad_seconds)
296
+ _audio = _audio[pad_len:-pad_len]
297
+ _audio = pad_array(_audio, per_length)
298
+ if lg_size!=0 and k!=0:
299
+ lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr_num != 1 else audio[-lg_size:]
300
+ lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr_num != 1 else _audio[0:lg_size]
301
+ lg_pre = lg1*(1-lg)+lg2*lg
302
+ audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr_num != 1 else audio[0:-lg_size]
303
+ audio.extend(lg_pre)
304
+ _audio = _audio[lg_size_c_l+lg_size_r:] if lgr_num != 1 else _audio[lg_size:]
305
+ audio.extend(list(_audio))
306
+ return np.array(audio)
307
+
308
+ class RealTimeVC:
309
+ def __init__(self):
310
+ self.last_chunk = None
311
+ self.last_o = None
312
+ self.chunk_len = 16000 # 区块长度
313
+ self.pre_len = 3840 # 交叉淡化长度,640的倍数
314
+
315
+ """输入输出都是1维numpy 音频波形数组"""
316
+
317
+ def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path,
318
+ cluster_infer_ratio=0,
319
+ auto_predict_f0=False,
320
+ noice_scale=0.4,
321
+ f0_filter=False):
322
+
323
+ import maad
324
+ audio, sr = torchaudio.load(input_wav_path)
325
+ audio = audio.cpu().numpy()[0]
326
+ temp_wav = io.BytesIO()
327
+ if self.last_chunk is None:
328
+ input_wav_path.seek(0)
329
+
330
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path,
331
+ cluster_infer_ratio=cluster_infer_ratio,
332
+ auto_predict_f0=auto_predict_f0,
333
+ noice_scale=noice_scale,
334
+ f0_filter=f0_filter)
335
+
336
+ audio = audio.cpu().numpy()
337
+ self.last_chunk = audio[-self.pre_len:]
338
+ self.last_o = audio
339
+ return audio[-self.chunk_len:]
340
+ else:
341
+ audio = np.concatenate([self.last_chunk, audio])
342
+ soundfile.write(temp_wav, audio, sr, format="wav")
343
+ temp_wav.seek(0)
344
+
345
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav,
346
+ cluster_infer_ratio=cluster_infer_ratio,
347
+ auto_predict_f0=auto_predict_f0,
348
+ noice_scale=noice_scale,
349
+ f0_filter=f0_filter)
350
+
351
+ audio = audio.cpu().numpy()
352
+ ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
353
+ self.last_chunk = audio[-self.pre_len:]
354
+ self.last_o = audio
355
+ return ret[self.chunk_len:2 * self.chunk_len]
inference/infer_tool_grad.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import json
3
+ import logging
4
+ import os
5
+ import time
6
+ from pathlib import Path
7
+ import io
8
+ import librosa
9
+ import maad
10
+ import numpy as np
11
+ from inference import slicer
12
+ import parselmouth
13
+ import soundfile
14
+ import torch
15
+ import torchaudio
16
+
17
+ from hubert import hubert_model
18
+ import utils
19
+ from models import SynthesizerTrn
20
+ logging.getLogger('numba').setLevel(logging.WARNING)
21
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
22
+
23
+ def resize2d_f0(x, target_len):
24
+ source = np.array(x)
25
+ source[source < 0.001] = np.nan
26
+ target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
27
+ source)
28
+ res = np.nan_to_num(target)
29
+ return res
30
+
31
+ def get_f0(x, p_len,f0_up_key=0):
32
+
33
+ time_step = 160 / 16000 * 1000
34
+ f0_min = 50
35
+ f0_max = 1100
36
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
37
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
38
+
39
+ f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
40
+ time_step=time_step / 1000, voicing_threshold=0.6,
41
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
42
+
43
+ pad_size=(p_len - len(f0) + 1) // 2
44
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
45
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
46
+
47
+ f0 *= pow(2, f0_up_key / 12)
48
+ f0_mel = 1127 * np.log(1 + f0 / 700)
49
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
50
+ f0_mel[f0_mel <= 1] = 1
51
+ f0_mel[f0_mel > 255] = 255
52
+ f0_coarse = np.rint(f0_mel).astype(np.int)
53
+ return f0_coarse, f0
54
+
55
+ def clean_pitch(input_pitch):
56
+ num_nan = np.sum(input_pitch == 1)
57
+ if num_nan / len(input_pitch) > 0.9:
58
+ input_pitch[input_pitch != 1] = 1
59
+ return input_pitch
60
+
61
+
62
+ def plt_pitch(input_pitch):
63
+ input_pitch = input_pitch.astype(float)
64
+ input_pitch[input_pitch == 1] = np.nan
65
+ return input_pitch
66
+
67
+
68
+ def f0_to_pitch(ff):
69
+ f0_pitch = 69 + 12 * np.log2(ff / 440)
70
+ return f0_pitch
71
+
72
+
73
+ def fill_a_to_b(a, b):
74
+ if len(a) < len(b):
75
+ for _ in range(0, len(b) - len(a)):
76
+ a.append(a[0])
77
+
78
+
79
+ def mkdir(paths: list):
80
+ for path in paths:
81
+ if not os.path.exists(path):
82
+ os.mkdir(path)
83
+
84
+
85
+ class VitsSvc(object):
86
+ def __init__(self):
87
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
88
+ self.SVCVITS = None
89
+ self.hps = None
90
+ self.speakers = None
91
+ self.hubert_soft = utils.get_hubert_model()
92
+
93
+ def set_device(self, device):
94
+ self.device = torch.device(device)
95
+ self.hubert_soft.to(self.device)
96
+ if self.SVCVITS != None:
97
+ self.SVCVITS.to(self.device)
98
+
99
+ def loadCheckpoint(self, path):
100
+ self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
101
+ self.SVCVITS = SynthesizerTrn(
102
+ self.hps.data.filter_length // 2 + 1,
103
+ self.hps.train.segment_size // self.hps.data.hop_length,
104
+ **self.hps.model)
105
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.SVCVITS, None)
106
+ _ = self.SVCVITS.eval().to(self.device)
107
+ self.speakers = self.hps.spk
108
+
109
+ def get_units(self, source, sr):
110
+ source = source.unsqueeze(0).to(self.device)
111
+ with torch.inference_mode():
112
+ units = self.hubert_soft.units(source)
113
+ return units
114
+
115
+
116
+ def get_unit_pitch(self, in_path, tran):
117
+ source, sr = torchaudio.load(in_path)
118
+ source = torchaudio.functional.resample(source, sr, 16000)
119
+ if len(source.shape) == 2 and source.shape[1] >= 2:
120
+ source = torch.mean(source, dim=0).unsqueeze(0)
121
+ soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
122
+ f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
123
+ return soft, f0
124
+
125
+ def infer(self, speaker_id, tran, raw_path):
126
+ speaker_id = self.speakers[speaker_id]
127
+ sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
128
+ soft, pitch = self.get_unit_pitch(raw_path, tran)
129
+ f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.device)
130
+ stn_tst = torch.FloatTensor(soft)
131
+ with torch.no_grad():
132
+ x_tst = stn_tst.unsqueeze(0).to(self.device)
133
+ x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2)
134
+ audio = self.SVCVITS.infer(x_tst, f0=f0, g=sid)[0,0].data.float()
135
+ return audio, audio.shape[-1]
136
+
137
+ def inference(self,srcaudio,chara,tran,slice_db):
138
+ sampling_rate, audio = srcaudio
139
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
140
+ if len(audio.shape) > 1:
141
+ audio = librosa.to_mono(audio.transpose(1, 0))
142
+ if sampling_rate != 16000:
143
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
144
+ soundfile.write("tmpwav.wav", audio, 16000, format="wav")
145
+ chunks = slicer.cut("tmpwav.wav", db_thresh=slice_db)
146
+ audio_data, audio_sr = slicer.chunks2audio("tmpwav.wav", chunks)
147
+ audio = []
148
+ for (slice_tag, data) in audio_data:
149
+ length = int(np.ceil(len(data) / audio_sr * self.hps.data.sampling_rate))
150
+ raw_path = io.BytesIO()
151
+ soundfile.write(raw_path, data, audio_sr, format="wav")
152
+ raw_path.seek(0)
153
+ if slice_tag:
154
+ _audio = np.zeros(length)
155
+ else:
156
+ out_audio, out_sr = self.infer(chara, tran, raw_path)
157
+ _audio = out_audio.cpu().numpy()
158
+ audio.extend(list(_audio))
159
+ audio = (np.array(audio) * 32768.0).astype('int16')
160
+ return (self.hps.data.sampling_rate,audio)
inference/slicer.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import librosa
2
+ import torch
3
+ import torchaudio
4
+
5
+
6
+ class Slicer:
7
+ def __init__(self,
8
+ sr: int,
9
+ threshold: float = -40.,
10
+ min_length: int = 5000,
11
+ min_interval: int = 300,
12
+ hop_size: int = 20,
13
+ max_sil_kept: int = 5000):
14
+ if not min_length >= min_interval >= hop_size:
15
+ raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
16
+ if not max_sil_kept >= hop_size:
17
+ raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
18
+ min_interval = sr * min_interval / 1000
19
+ self.threshold = 10 ** (threshold / 20.)
20
+ self.hop_size = round(sr * hop_size / 1000)
21
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
22
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
23
+ self.min_interval = round(min_interval / self.hop_size)
24
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
25
+
26
+ def _apply_slice(self, waveform, begin, end):
27
+ if len(waveform.shape) > 1:
28
+ return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
29
+ else:
30
+ return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
31
+
32
+ # @timeit
33
+ def slice(self, waveform):
34
+ if len(waveform.shape) > 1:
35
+ samples = librosa.to_mono(waveform)
36
+ else:
37
+ samples = waveform
38
+ if samples.shape[0] <= self.min_length:
39
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
40
+ rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
41
+ sil_tags = []
42
+ silence_start = None
43
+ clip_start = 0
44
+ for i, rms in enumerate(rms_list):
45
+ # Keep looping while frame is silent.
46
+ if rms < self.threshold:
47
+ # Record start of silent frames.
48
+ if silence_start is None:
49
+ silence_start = i
50
+ continue
51
+ # Keep looping while frame is not silent and silence start has not been recorded.
52
+ if silence_start is None:
53
+ continue
54
+ # Clear recorded silence start if interval is not enough or clip is too short
55
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
56
+ need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
57
+ if not is_leading_silence and not need_slice_middle:
58
+ silence_start = None
59
+ continue
60
+ # Need slicing. Record the range of silent frames to be removed.
61
+ if i - silence_start <= self.max_sil_kept:
62
+ pos = rms_list[silence_start: i + 1].argmin() + silence_start
63
+ if silence_start == 0:
64
+ sil_tags.append((0, pos))
65
+ else:
66
+ sil_tags.append((pos, pos))
67
+ clip_start = pos
68
+ elif i - silence_start <= self.max_sil_kept * 2:
69
+ pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
70
+ pos += i - self.max_sil_kept
71
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
72
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
73
+ if silence_start == 0:
74
+ sil_tags.append((0, pos_r))
75
+ clip_start = pos_r
76
+ else:
77
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
78
+ clip_start = max(pos_r, pos)
79
+ else:
80
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
81
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
82
+ if silence_start == 0:
83
+ sil_tags.append((0, pos_r))
84
+ else:
85
+ sil_tags.append((pos_l, pos_r))
86
+ clip_start = pos_r
87
+ silence_start = None
88
+ # Deal with trailing silence.
89
+ total_frames = rms_list.shape[0]
90
+ if silence_start is not None and total_frames - silence_start >= self.min_interval:
91
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
92
+ pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
93
+ sil_tags.append((pos, total_frames + 1))
94
+ # Apply and return slices.
95
+ if len(sil_tags) == 0:
96
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
97
+ else:
98
+ chunks = []
99
+ # 第一段静音并非从头开始,补上有声片段
100
+ if sil_tags[0][0]:
101
+ chunks.append(
102
+ {"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
103
+ for i in range(0, len(sil_tags)):
104
+ # 标识有声片段(跳过第一段)
105
+ if i:
106
+ chunks.append({"slice": False,
107
+ "split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
108
+ # 标识所有静音片段
109
+ chunks.append({"slice": True,
110
+ "split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
111
+ # 最后一段静音并非结尾,补上结尾片段
112
+ if sil_tags[-1][1] * self.hop_size < len(waveform):
113
+ chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
114
+ chunk_dict = {}
115
+ for i in range(len(chunks)):
116
+ chunk_dict[str(i)] = chunks[i]
117
+ return chunk_dict
118
+
119
+
120
+ def cut(audio_path, db_thresh=-30, min_len=5000):
121
+ audio, sr = librosa.load(audio_path, sr=None)
122
+ slicer = Slicer(
123
+ sr=sr,
124
+ threshold=db_thresh,
125
+ min_length=min_len
126
+ )
127
+ chunks = slicer.slice(audio)
128
+ return chunks
129
+
130
+
131
+ def chunks2audio(audio_path, chunks):
132
+ chunks = dict(chunks)
133
+ audio, sr = torchaudio.load(audio_path)
134
+ if len(audio.shape) == 2 and audio.shape[1] >= 2:
135
+ audio = torch.mean(audio, dim=0).unsqueeze(0)
136
+ audio = audio.cpu().numpy()[0]
137
+ result = []
138
+ for k, v in chunks.items():
139
+ tag = v["split_time"].split(",")
140
+ if tag[0] != tag[1]:
141
+ result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
142
+ return result, sr