Spaces:
Running
Running
MarcusSu1216
commited on
Commit
•
e2ce104
1
Parent(s):
842c3cd
Update utils.py
Browse files
utils.py
CHANGED
@@ -6,9 +6,7 @@ import argparse
|
|
6 |
import logging
|
7 |
import json
|
8 |
import subprocess
|
9 |
-
import warnings
|
10 |
import random
|
11 |
-
import functools
|
12 |
|
13 |
import librosa
|
14 |
import numpy as np
|
@@ -17,8 +15,6 @@ import torch
|
|
17 |
from torch.nn import functional as F
|
18 |
from modules.commons import sequence_mask
|
19 |
from hubert import hubert_model
|
20 |
-
from modules.crepe import CrepePitchExtractor
|
21 |
-
|
22 |
MATPLOTLIB_FLAG = False
|
23 |
|
24 |
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
@@ -50,21 +46,6 @@ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
|
50 |
# factor = torch.ones(f0.shape[0], 1, 1).to(f0.device)
|
51 |
# f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
|
52 |
# return f0_norm
|
53 |
-
|
54 |
-
def deprecated(func):
|
55 |
-
"""This is a decorator which can be used to mark functions
|
56 |
-
as deprecated. It will result in a warning being emitted
|
57 |
-
when the function is used."""
|
58 |
-
@functools.wraps(func)
|
59 |
-
def new_func(*args, **kwargs):
|
60 |
-
warnings.simplefilter('always', DeprecationWarning) # turn off filter
|
61 |
-
warnings.warn("Call to deprecated function {}.".format(func.__name__),
|
62 |
-
category=DeprecationWarning,
|
63 |
-
stacklevel=2)
|
64 |
-
warnings.simplefilter('default', DeprecationWarning) # reset filter
|
65 |
-
return func(*args, **kwargs)
|
66 |
-
return new_func
|
67 |
-
|
68 |
def normalize_f0(f0, x_mask, uv, random_scale=True):
|
69 |
# calculate means based on x_mask
|
70 |
uv_sum = torch.sum(uv, dim=1, keepdim=True)
|
@@ -81,18 +62,6 @@ def normalize_f0(f0, x_mask, uv, random_scale=True):
|
|
81 |
exit(0)
|
82 |
return f0_norm * x_mask
|
83 |
|
84 |
-
def compute_f0_uv_torchcrepe(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512,device=None):
|
85 |
-
x = wav_numpy
|
86 |
-
if p_len is None:
|
87 |
-
p_len = x.shape[0]//hop_length
|
88 |
-
else:
|
89 |
-
assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error"
|
90 |
-
|
91 |
-
f0_min = 50
|
92 |
-
f0_max = 1100
|
93 |
-
F0Creper = CrepePitchExtractor(hop_length=hop_length,f0_min=f0_min,f0_max=f0_max,device=device)
|
94 |
-
f0,uv = F0Creper(x[None,:].float(),sampling_rate,pad_to=p_len)
|
95 |
-
return f0,uv
|
96 |
|
97 |
def plot_data_to_numpy(x, y):
|
98 |
global MATPLOTLIB_FLAG
|
|
|
6 |
import logging
|
7 |
import json
|
8 |
import subprocess
|
|
|
9 |
import random
|
|
|
10 |
|
11 |
import librosa
|
12 |
import numpy as np
|
|
|
15 |
from torch.nn import functional as F
|
16 |
from modules.commons import sequence_mask
|
17 |
from hubert import hubert_model
|
|
|
|
|
18 |
MATPLOTLIB_FLAG = False
|
19 |
|
20 |
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
|
|
46 |
# factor = torch.ones(f0.shape[0], 1, 1).to(f0.device)
|
47 |
# f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
|
48 |
# return f0_norm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def normalize_f0(f0, x_mask, uv, random_scale=True):
|
50 |
# calculate means based on x_mask
|
51 |
uv_sum = torch.sum(uv, dim=1, keepdim=True)
|
|
|
62 |
exit(0)
|
63 |
return f0_norm * x_mask
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def plot_data_to_numpy(x, y):
|
67 |
global MATPLOTLIB_FLAG
|