Margaret's picture
Create app.py
fd925f9
raw
history blame
545 Bytes
import gradio as gr
import transformers
from transformers import pipeline
pipe = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
def get_sentiment(text):
return pipe(text)[0]["label"]
iface = gr.Interface(fn = get_sentiment,
inputs = "text",
outputs = 'text',
title= 'Sentiment Analysis',
description = 'Get Sentiment Negative/Positive for the given input')
iface.launch(inline=False)