|
import gradio as gr |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
import logging |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
|
|
model_id = "google/flan-t5-small" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_id) |
|
|
|
def correct_htr(raw_htr_text, max_new_tokens, temperature): |
|
try: |
|
if not raw_htr_text: |
|
raise ValueError("Input text cannot be empty.") |
|
|
|
logging.info("Processing HTR correction with Flan-T5 Small...") |
|
prompt = f"Correct this text: {raw_htr_text}" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
max_length = min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens) |
|
outputs = model.generate(**inputs, max_length=max_length, temperature=temperature) |
|
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
logging.debug(f"Generated output for HTR correction: {corrected_text}") |
|
return corrected_text |
|
except ValueError as ve: |
|
logging.warning(f"Validation error: {ve}") |
|
return str(ve) |
|
except Exception as e: |
|
logging.error(f"Error in HTR correction: {e}", exc_info=True) |
|
return "An error occurred while processing the text." |
|
|
|
def summarize_text(legal_text, max_new_tokens, temperature): |
|
try: |
|
if not legal_text: |
|
raise ValueError("Input text cannot be empty.") |
|
|
|
logging.info("Processing summarization with Flan-T5 Small...") |
|
prompt = f"Summarize the following legal text: {legal_text}" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
max_length = min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens) |
|
outputs = model.generate(**inputs, max_length=max_length, temperature=temperature) |
|
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
logging.debug(f"Generated summary: {summary}") |
|
return summary |
|
except ValueError as ve: |
|
logging.warning(f"Validation error: {ve}") |
|
return str(ve) |
|
except Exception as e: |
|
logging.error(f"Error in summarization: {e}", exc_info=True) |
|
return "An error occurred while summarizing the text." |
|
|
|
def answer_question(legal_text, question, max_new_tokens, temperature): |
|
try: |
|
if not legal_text or not question: |
|
raise ValueError("Both legal text and question must be provided.") |
|
|
|
logging.info("Processing question-answering with Flan-T5 Small...") |
|
prompt = f"Answer the following question based on the provided context:\n\nQuestion: {question}\n\nContext: {legal_text}" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
max_length = min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens) |
|
outputs = model.generate(**inputs, max_length=max_length, temperature=temperature) |
|
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
logging.debug(f"Generated answer: {answer}") |
|
return answer |
|
except ValueError as ve: |
|
logging.warning(f"Validation error: {ve}") |
|
return str(ve) |
|
except Exception as e: |
|
logging.error(f"Error in question-answering: {e}", exc_info=True) |
|
return "An error occurred while answering the question." |
|
|
|
def clear_fields(): |
|
return "", "", "" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Flan-T5 Small Legal Assistant") |
|
gr.Markdown("Use this tool to correct raw HTR, summarize legal texts, or answer questions about legal cases (powered by Flan-T5 Small).") |
|
|
|
with gr.Row(): |
|
gr.HTML(''' |
|
<div style="display: flex; gap: 10px;"> |
|
<div style="border: 2px solid black; padding: 10px; display: inline-block;"> |
|
<a href="http://www.marinelives.org/wiki/Tools:_Admiralty_court_legal_glossary" target="_blank"> |
|
<button style="font-weight:bold;">Admiralty Court Legal Glossary</button> |
|
</a> |
|
</div> |
|
<div style="border: 2px solid black; padding: 10px; display: inline-block;"> |
|
<a href="https://raw.githubusercontent.com/Addaci/HCA/refs/heads/main/HCA_13_70_Full_Volume_Processed_Text_EDITED_Ver.1.2_18062024.txt" target="_blank"> |
|
<button style="font-weight:bold;">HCA 13/70 Ground Truth (1654-55)</button> |
|
</a> |
|
</div> |
|
</div> |
|
''') |
|
|
|
|
|
with gr.Row(): |
|
max_new_tokens_slider = gr.Slider(minimum=10, maximum=512, value=128, step=1, label="Max New Tokens") |
|
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature") |
|
|
|
with gr.Tab("Correct HTR"): |
|
gr.Markdown("### Correct Raw HTR Text") |
|
raw_htr_input = gr.Textbox(lines=5, placeholder="Enter raw HTR text here...") |
|
corrected_output = gr.Textbox(lines=5, placeholder="Corrected HTR text") |
|
correct_button = gr.Button("Correct HTR") |
|
clear_button = gr.Button("Clear") |
|
|
|
correct_button.click(correct_htr, inputs=[raw_htr_input, max_new_tokens_slider, temperature_slider], outputs=corrected_output) |
|
clear_button.click(clear_fields, outputs=[raw_htr_input, corrected_output]) |
|
|
|
with gr.Tab("Summarize Legal Text"): |
|
gr.Markdown("### Summarize Legal Text") |
|
legal_text_input = gr.Textbox(lines=10, placeholder="Enter legal text to summarize...") |
|
summary_output = gr.Textbox(lines=5, placeholder="Summary of legal text") |
|
summarize_button = gr.Button("Summarize Text") |
|
clear_button = gr.Button("Clear") |
|
|
|
summarize_button.click(summarize_text, inputs=[legal_text_input, max_new_tokens_slider, temperature_slider], outputs=summary_output) |
|
clear_button.click(clear_fields, outputs=[legal_text_input, summary_output]) |
|
|
|
with gr.Tab("Answer Legal Question"): |
|
gr.Markdown("### Answer a Question Based on Legal Text") |
|
legal_text_input_q = gr.Textbox(lines=10, placeholder="Enter legal text...") |
|
question_input = gr.Textbox(lines=2, placeholder="Enter your question...") |
|
answer_output = gr.Textbox(lines=5, placeholder="Answer to your question") |
|
answer_button = gr.Button("Get Answer") |
|
clear_button = gr.Button("Clear") |
|
|
|
answer_button.click(answer_question, inputs=[legal_text_input_q, question_input, max_new_tokens_slider, temperature_slider], outputs=answer_output) |
|
clear_button.click(clear_fields, outputs=[legal_text_input_q, question_input, answer_output]) |
|
|
|
|
|
model.generate(**tokenizer("Warm-up", return_tensors="pt"), max_length=10) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |