John Graham Reynolds
commited on
Commit
·
217c111
1
Parent(s):
9b29e93
update pandas indexing
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ description = """<p style='text-align: center'>
|
|
11 |
As I introduce myself to the entirety of the 🤗 ecosystem, I've put together this Space to show off a temporary fix for a current 🪲 in the 🤗 Evaluate library. \n
|
12 |
|
13 |
Check out the original, longstanding issue [here](https://github.com/huggingface/evaluate/issues/234). This details how it is currently impossible to \
|
14 |
-
|
15 |
evaluation. I encountered this issue specifically while training [RoBERTa-base-DReiFT](https://huggingface.co/MarioBarbeque/RoBERTa-base-DReiFT) for multilabel \
|
16 |
text classification of 805 labeled medical conditions based on drug reviews. \n
|
17 |
|
@@ -24,9 +24,9 @@ trained [multilabel text classification model](https://github.com/johngrahamreyn
|
|
24 |
|
25 |
def evaluation(predictions, metrics) -> str:
|
26 |
|
27 |
-
f1 = FixedF1(average=metrics["f1"])
|
28 |
-
precision = FixedPrecision(average=metrics["precision"])
|
29 |
-
recall = FixedRecall(average=metrics["recall"])
|
30 |
combined = evaluate.combine([f1, recall, precision])
|
31 |
|
32 |
df = predictions.get_dataframe()
|
|
|
11 |
As I introduce myself to the entirety of the 🤗 ecosystem, I've put together this Space to show off a temporary fix for a current 🪲 in the 🤗 Evaluate library. \n
|
12 |
|
13 |
Check out the original, longstanding issue [here](https://github.com/huggingface/evaluate/issues/234). This details how it is currently impossible to \
|
14 |
+
`evaluate.combine()` multiple metrics related to multilabel text classification. Particularly, one cannot `combine` the `f1`, `precision`, and `recall` scores for \
|
15 |
evaluation. I encountered this issue specifically while training [RoBERTa-base-DReiFT](https://huggingface.co/MarioBarbeque/RoBERTa-base-DReiFT) for multilabel \
|
16 |
text classification of 805 labeled medical conditions based on drug reviews. \n
|
17 |
|
|
|
24 |
|
25 |
def evaluation(predictions, metrics) -> str:
|
26 |
|
27 |
+
f1 = FixedF1(average=metrics.loc[metrics["Metric"] == "f1"]["Averaging Type"][0])
|
28 |
+
precision = FixedPrecision(average=metrics.loc[metrics["Metric"] == "precision"]["Averaging Type"][0])
|
29 |
+
recall = FixedRecall(average=metrics.loc[metrics["Metric"] == "recall"]["Averaging Type"][0])
|
30 |
combined = evaluate.combine([f1, recall, precision])
|
31 |
|
32 |
df = predictions.get_dataframe()
|