Spaces:
Sleeping
Sleeping
""" | |
Come back to this file and previous versions in this repo to configure a fix for the broken launch_gradio_widget command | |
""" | |
import sys | |
import gradio as gr | |
import pandas as pd | |
import evaluate | |
from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme, parse_test_cases | |
# from evaluate.utils import launch_gradio_widget # using this directly is erroneous - lets fix this | |
from fixed_f1 import FixedF1 | |
from pathlib import Path | |
metric = FixedF1() | |
if isinstance(metric.features, list): | |
(feature_names, feature_types) = zip(*metric.features[0].items()) | |
else: | |
(feature_names, feature_types) = zip(*metric.features.items()) | |
gradio_input_types = infer_gradio_input_types(feature_types) | |
local_path = Path(sys.path[0]) | |
test_cases = [ {"predictions":[1,2,3,4,5], "references":[1,2,5,4,3]} ] # configure this randomly using randint generator and feature names? | |
# configure this based on the input type, etc. for launch_gradio_widget | |
def compute(input_df: pd.DataFrame, method: str): | |
metric = FixedF1(average=method) | |
cols = [col for col in input_df.columns] | |
predicted = [int(num) for num in input_df[cols[0]].to_list()] | |
references = [int(num) for num in input_df[cols[1]].to_list()] | |
metric.add_batch(predictions=predicted, references=references) | |
outputs = metric.compute() | |
f"Your metrics are as follows: \n {outputs}" | |
space = gr.Interface( | |
fn=compute, | |
inputs=[ | |
gr.Dataframe( | |
headers=feature_names, | |
col_count=len(feature_names), | |
row_count=5, | |
datatype=json_to_string_type(gradio_input_types), | |
), | |
gr.Radio( | |
["weighted", "micro", "macro", "binary", "None"], | |
label="Averaging Method", | |
info="Method for averaging the F1 score across labels." | |
) | |
], | |
outputs=gr.Textbox(label=metric.name), | |
description=( | |
metric.info.description + "\nIf this is a text-based metric, make sure to wrap your input in double quotes." | |
" Alternatively you can use a JSON-formatted list as input." | |
), | |
title=f"Metric: {metric.name}", | |
article=parse_readme(local_path / "README.md"), | |
# TODO: load test cases and use them to populate examples | |
examples=[ | |
# correct depth? | |
pd.DataFrame(parse_test_cases(test_cases, feature_names, gradio_input_types)[0]), | |
pd.DataFrame(columns=["Metric", "Averaging Method"], data=[["f1", "weighted"]]) | |
], | |
cache_examples=False | |
) | |
space.launch() |