FixedF1 / app.py
John Graham Reynolds
change input tuple to input list
728d57c
raw
history blame
2.12 kB
import sys
import gradio as gr
import pandas as pd
import evaluate
from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme, parse_test_cases
# from evaluate.utils import launch_gradio_widget # using this directly is erroneous - lets fix this
from fixed_f1 import FixedF1
from pathlib import Path
metric = FixedF1()
if isinstance(metric.features, list):
(feature_names, feature_types) = zip(*metric.features[0].items())
else:
(feature_names, feature_types) = zip(*metric.features.items())
gradio_input_types = infer_gradio_input_types(feature_types)
local_path = Path(sys.path[0])
test_cases = [ {"predictions":[1,2,3,4,5], "references":[1,2,5,4,3]} ] # configure this randomly using randint generator and feature names?
# configure this based on the input type, etc. for launch_gradio_widget
def compute(input_df: pd.DataFrame, feature_names: list[str]):
predicted = [int(num) for num in input_df[feature_names[0]].to_list()]
references = [int(num) for num in input_df[feature_names[1]].to_list()]
metric.add_batch(predictions=predicted, references=references)
outputs = metric._compute()
f"Your metrics are as follows: \n {outputs}"
space = gr.Interface(
fn=compute,
inputs=[
gr.Dataframe(
headers=feature_names,
col_count=len(feature_names),
row_count=5,
datatype=json_to_string_type(gradio_input_types),
),
list(feature_names)
],
outputs=gr.Textbox(label=metric.name),
description=(
metric.info.description + "\nIf this is a text-based metric, make sure to wrap your input in double quotes."
" Alternatively you can use a JSON-formatted list as input."
),
title=f"Metric: {metric.name}",
article=parse_readme(local_path / "README.md"),
# TODO: load test cases and use them to populate examples
examples=[
[
# consider how to generalize this
parse_test_cases(test_cases, feature_names, gradio_input_types)[0],
feature_names
]
],
cache_examples=False
)
space.launch()