Spaces:
Sleeping
Sleeping
John Graham Reynolds
commited on
Commit
·
0b0e7aa
1
Parent(s):
c5503a4
add test cases and try out readme parser as defined in the lib
Browse files
app.py
CHANGED
@@ -1,8 +1,15 @@
|
|
|
|
|
|
|
|
1 |
import evaluate
|
2 |
-
from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme
|
3 |
# from evaluate.utils import launch_gradio_widget # using this directly is erroneous - lets fix this
|
4 |
from fixed_f1 import FixedF1
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
|
7 |
metric = FixedF1()
|
8 |
|
@@ -10,19 +17,18 @@ if isinstance(metric.features, list):
|
|
10 |
(feature_names, feature_types) = zip(*metric.features[0].items())
|
11 |
else:
|
12 |
(feature_names, feature_types) = zip(*metric.features.items())
|
13 |
-
gradio_input_types = infer_gradio_input_types(feature_types)
|
14 |
|
15 |
gradio_input_types = infer_gradio_input_types(feature_types)
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
space = gr.Interface(
|
21 |
fn=compute,
|
22 |
inputs=gr.Dataframe(
|
23 |
headers=feature_names,
|
24 |
col_count=len(feature_names),
|
25 |
-
row_count=
|
26 |
datatype=json_to_string_type(gradio_input_types),
|
27 |
),
|
28 |
outputs=gr.Textbox(label=metric.name),
|
@@ -31,9 +37,9 @@ space = gr.Interface(
|
|
31 |
" Alternatively you can use a JSON-formatted list as input."
|
32 |
),
|
33 |
title=f"Metric: {metric.name}",
|
34 |
-
article=parse_readme("
|
35 |
# TODO: load test cases and use them to populate examples
|
36 |
-
|
37 |
)
|
38 |
|
39 |
space.launch()
|
|
|
1 |
+
import sys
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
import evaluate
|
5 |
+
from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme, parse_test_cases
|
6 |
# from evaluate.utils import launch_gradio_widget # using this directly is erroneous - lets fix this
|
7 |
from fixed_f1 import FixedF1
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
def compute(input: pd.DataFrame):
|
11 |
+
|
12 |
+
metric._compute()
|
13 |
|
14 |
metric = FixedF1()
|
15 |
|
|
|
17 |
(feature_names, feature_types) = zip(*metric.features[0].items())
|
18 |
else:
|
19 |
(feature_names, feature_types) = zip(*metric.features.items())
|
|
|
20 |
|
21 |
gradio_input_types = infer_gradio_input_types(feature_types)
|
22 |
|
23 |
+
local_path = Path(sys.path[0])
|
24 |
+
test_cases = [ {"predictions":[1,2,3,4,5], "references":[1,2,5,4,3]} ] # configure this randomly using randint generator and feature names?
|
25 |
|
26 |
space = gr.Interface(
|
27 |
fn=compute,
|
28 |
inputs=gr.Dataframe(
|
29 |
headers=feature_names,
|
30 |
col_count=len(feature_names),
|
31 |
+
row_count=5,
|
32 |
datatype=json_to_string_type(gradio_input_types),
|
33 |
),
|
34 |
outputs=gr.Textbox(label=metric.name),
|
|
|
37 |
" Alternatively you can use a JSON-formatted list as input."
|
38 |
),
|
39 |
title=f"Metric: {metric.name}",
|
40 |
+
article=parse_readme(local_path / "README.md"),
|
41 |
# TODO: load test cases and use them to populate examples
|
42 |
+
examples=[parse_test_cases(test_cases, feature_names, gradio_input_types)]
|
43 |
)
|
44 |
|
45 |
space.launch()
|