import sys import gradio as gr import pandas as pd import evaluate from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme, parse_test_cases # from evaluate.utils import launch_gradio_widget # using this directly is erroneous - lets fix this from fixed_f1 import FixedF1 from pathlib import Path metric = FixedF1() if isinstance(metric.features, list): (feature_names, feature_types) = zip(*metric.features[0].items()) else: (feature_names, feature_types) = zip(*metric.features.items()) gradio_input_types = infer_gradio_input_types(feature_types) local_path = Path(sys.path[0]) test_cases = [ {"predictions":[1,2,3,4,5], "references":[1,2,5,4,3]} ] # configure this randomly using randint generator and feature names? # configure this based on the input type, etc. for launch_gradio_widget def compute(input_df: pd.DataFrame): cols = [col for col in input_df.columns] predicted = [int(num) for num in input_df[cols[0]].to_list()] references = [int(num) for num in input_df[cols[1]].to_list()] metric.add_batch(predictions=predicted, references=references) outputs = metric.compute() f"Your metrics are as follows: \n {outputs}" space = gr.Interface( fn=compute, inputs=gr.Dataframe( headers=feature_names, col_count=len(feature_names), row_count=5, datatype=json_to_string_type(gradio_input_types), ), outputs=gr.Textbox(label=metric.name), description=( metric.info.description + "\nIf this is a text-based metric, make sure to wrap your input in double quotes." " Alternatively you can use a JSON-formatted list as input." ), title=f"Metric: {metric.name}", article=parse_readme(local_path / "README.md"), # TODO: load test cases and use them to populate examples examples=[ # correct depth? parse_test_cases(test_cases, feature_names, gradio_input_types) ], cache_examples=False ) space.launch()