import sys import gradio as gr import pandas as pd import evaluate from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme, parse_test_cases # from evaluate.utils import launch_gradio_widget # using this directly is erroneous - lets fix this from fixed_f1 import FixedF1 from pathlib import Path added_description = """ See the 🤗 Space showing off how to combine various metrics: [MarioBarbeque/CombinedEvaluationMetrics🪲](https://huggingface.co/spaces/MarioBarbeque/CombinedEvaluationMetrics). This collected fix thereby circumnavigates the original, longstanding issue found [here](https://github.com/huggingface/evaluate/issues/234). We look forward to fixing this in a PR soon. In the specific use case of the `FixedF1` metric, one writes the following:\n ```python f1 = FixedF1(average=...) f1.add_batch(predictions=..., references=...) f1.compute() ```\n where the `average` parameter can be chosen to configure the way f1 scores across labels are averaged. Acceptable values include `[None, 'micro', 'macro', 'weighted']` ( or `binary` if there exist only two labels). \n Play around with the interface below to see how the F1 score changes based on predictions, references, and method of averaging! """ metric = FixedF1() if isinstance(metric.features, list): (feature_names, feature_types) = zip(*metric.features[0].items()) else: (feature_names, feature_types) = zip(*metric.features.items()) gradio_input_types = infer_gradio_input_types(feature_types) local_path = Path(sys.path[0]) # configure these randomly using randint generator and feature names? test_case_1 = [ {"predictions":[1,2,3,4,5], "references":[1,2,5,4,3]} ] test_case_2 = [ {"predictions":[9,8,7,6,5], "references":[7,8,9,6,5]} ] # configure this based on the input type, etc. for launch_gradio_widget def compute(input_df: pd.DataFrame, method: str): metric = FixedF1(average=method if method != "None" else None) cols = [col for col in input_df.columns] predicted = [int(num) for num in input_df[cols[0]].to_list()] references = [int(num) for num in input_df[cols[1]].to_list()] metric.add_batch(predictions=predicted, references=references) outputs = metric.compute() return f"The F1 score for these predictions is: \n {outputs}" space = gr.Interface( fn=compute, inputs=[ gr.Dataframe( headers=feature_names, col_count=len(feature_names), row_count=5, datatype=json_to_string_type(gradio_input_types), ), gr.Radio( ["weighted", "micro", "macro", "None", "binary"], label="Averaging Method", info="Method for averaging the F1 score across labels. \n `binary` only works if you are evaluating a binary classification model." ) ], outputs=gr.Textbox(label=metric.name), description=metric.info.description + added_description, title="FixedF1 Metric", # think about how to generalize this with the launch_gradio_widget - it seems fine as is really article=parse_readme(local_path / "README.md"), examples=[ [ parse_test_cases(test_case_1, feature_names, gradio_input_types)[0], # notice how we unpack this for when we fix launch_gradio_widget "weighted" ], [ parse_test_cases(test_case_2, feature_names, gradio_input_types)[0], "micro" ], ], cache_examples=False ) space.launch()