Spaces:
Sleeping
Sleeping
John Graham Reynolds
commited on
Commit
·
677fc21
1
Parent(s):
495a21f
add precision file
Browse files- __init__.py +5 -0
- fixed_precision.py +72 -0
__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fixed_precision import FixedPrecision
|
2 |
+
|
3 |
+
__all__ =[
|
4 |
+
"FixedPrecision"
|
5 |
+
]
|
fixed_precision.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import evaluate
|
3 |
+
# from evaluate.metrics.precision import Precision
|
4 |
+
from sklearn.metrics import precision_score
|
5 |
+
|
6 |
+
_DESCRIPTION = """
|
7 |
+
Custom built Precision metric that accepts underlying kwargs at instantiation time.
|
8 |
+
This class allows one to circumvent the current issue of `combine`-ing the precision metric, instantiated with its own parameters, into a `CombinedEvaluations` class with other metrics.
|
9 |
+
\n
|
10 |
+
In general, the precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false positives.
|
11 |
+
The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.
|
12 |
+
"""
|
13 |
+
|
14 |
+
_CITATION = """
|
15 |
+
@online{MarioBbqPrec,
|
16 |
+
author = {John Graham Reynolds aka @MarioBarbeque},
|
17 |
+
title = {{Fixed Precision Hugging Face Metric},
|
18 |
+
year = 2024,
|
19 |
+
url = {https://huggingface.co/spaces/MarioBarbeque/FixedPrecision},
|
20 |
+
urldate = {2024-11-6}
|
21 |
+
}
|
22 |
+
"""
|
23 |
+
|
24 |
+
_INPUTS = """
|
25 |
+
'average': This parameter is required for multiclass/multilabel targets.
|
26 |
+
If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data.
|
27 |
+
Options include: {‘micro’, ‘macro’, ‘samples’, ‘weighted’, ‘binary’} or `None`. The default value for binary classification is `"binary"`.\n
|
28 |
+
|
29 |
+
'zero_division': "Sets the value to return when there is a zero division". Options include:
|
30 |
+
{`“warn”`, `0.0`, `1.0`, `np.nan`}. The default value is `"warn"`.
|
31 |
+
"""
|
32 |
+
|
33 |
+
# could in principle subclass Precision, but ideally we can work the fix into the Precision class to maintain SOLID code
|
34 |
+
# for this immediate fix we create a new class
|
35 |
+
|
36 |
+
class FixedPrecision(evaluate.Metric):
|
37 |
+
|
38 |
+
def __init__(self, average="binary", zero_division="warn"):
|
39 |
+
super().__init__()
|
40 |
+
self.average = average
|
41 |
+
self.zero_division = zero_division
|
42 |
+
# additional values passed to compute() could and probably should (?) all be passed here so that the final computation is configured immediately at Metric instantiation
|
43 |
+
|
44 |
+
def _info(self):
|
45 |
+
return evaluate.MetricInfo(
|
46 |
+
description=_DESCRIPTION,
|
47 |
+
citation=_CITATION,
|
48 |
+
inputs_description=_INPUTS,
|
49 |
+
features=datasets.Features(
|
50 |
+
{
|
51 |
+
"predictions": datasets.Sequence(datasets.Value("int32")),
|
52 |
+
"references": datasets.Sequence(datasets.Value("int32")),
|
53 |
+
}
|
54 |
+
if self.config_name == "multilabel"
|
55 |
+
else {
|
56 |
+
"predictions": datasets.Value("int32"),
|
57 |
+
"references": datasets.Value("int32"),
|
58 |
+
}
|
59 |
+
),
|
60 |
+
reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html"],
|
61 |
+
)
|
62 |
+
|
63 |
+
# could remove specific kwargs like average, sample_weight from _compute() method and simply pass them to the underlying scikit-learn function in the form of a class var self.*
|
64 |
+
# but leaving for sake of potentially subclassing Precision
|
65 |
+
|
66 |
+
def _compute(
|
67 |
+
self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None, zero_division="warn",
|
68 |
+
):
|
69 |
+
score = precision_score(
|
70 |
+
references, predictions, labels=labels, pos_label=pos_label, average=self.average, sample_weight=sample_weight, zero_division=self.zero_division,
|
71 |
+
)
|
72 |
+
return {"precision": float(score) if score.size == 1 else score}
|