import sys import gradio as gr import pandas as pd import numpy as np import evaluate from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme, parse_test_cases # from evaluate.utils import launch_gradio_widget # using this directly is erroneous - lets fix this from fixed_precision import FixedPrecision from pathlib import Path added_description = """ See the 🤗 Space showing off how to combine various metrics here: [MarioBarbeque/CombinedEvaluationMetrics](https://huggingface.co/spaces/MarioBarbeque/CombinedEvaluationMetrics) In the specific use case of the `FixedPrecision` metric, one writes the following:\n ```python precision = FixedPrecision(average=..., zero_division=...) precision.add_batch(predictions=..., references=...) precision.compute() ```\n where the `average` parameter can be chosen to configure the way precision scores across labels are averaged. Acceptable values include `[None, 'micro', 'macro', 'weighted']` ( or `binary` if there exist only two labels). Similarly, the `zero_division` parameter "Sets the value to return when there is a zero division". Options include: {`“warn”`, `0.0`, `1.0`, `np.nan`}. Since "warn" can still result in an error, we fix to it NaN in this demo.\n """ metric = FixedPrecision() if isinstance(metric.features, list): (feature_names, feature_types) = zip(*metric.features[0].items()) else: (feature_names, feature_types) = zip(*metric.features.items()) gradio_input_types = infer_gradio_input_types(feature_types) local_path = Path(sys.path[0]) # configure these randomly using randint generator and feature names? test_case_1 = [ {"predictions":[1,2,3,4,5], "references":[1,2,5,4,3]} ] test_case_2 = [ {"predictions":[9,8,7,6,5], "references":[7,8,9,6,5]} ] # configure this based on the input type, etc. for launch_gradio_widget def compute(input_df: pd.DataFrame, method: str): metric = FixedPrecision(average=method if method != "None" else None, zero_division=np.nan) cols = [col for col in input_df.columns] predicted = [int(num) for num in input_df[cols[0]].to_list()] references = [int(num) for num in input_df[cols[1]].to_list()] metric.add_batch(predictions=predicted, references=references) outputs = metric.compute() return f"The precision score for these predictions is: \n {outputs}" space = gr.Interface( fn=compute, inputs=[ gr.Dataframe( headers=feature_names, col_count=len(feature_names), row_count=5, datatype=json_to_string_type(gradio_input_types), ), gr.Radio( ["weighted", "micro", "macro", "None", "binary"], label="Averaging Method", info="Method for averaging the precision score across labels. \n `binary` only works if you are evaluating a binary classification model." ) ], outputs=gr.Textbox(label=metric.name), description=metric.info.description + added_description, title="FixedPrecision Metric", # think about how to generalize this with the launch_gradio_widget - it seems fine as is really article=parse_readme(local_path / "README.md"), examples=[ [ parse_test_cases(test_case_1, feature_names, gradio_input_types)[0], # notice how we unpack this for when we fix launch_gradio_widget "weighted" ], [ parse_test_cases(test_case_2, feature_names, gradio_input_types)[0], "micro" ], ], cache_examples=False ) space.launch()