Spaces:
Sleeping
Sleeping
File size: 1,079 Bytes
94849c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("MarkAdamsMSBA24/ADRv2024")
model = AutoModelForSequenceClassification.from_pretrained("MarkAdamsMSBA24/ADRv2024")
# Define the prediction function
def get_prediction(text):
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
prediction_scores = outputs.logits
predicted_class = torch.argmax(prediction_scores, dim=-1).item()
return f"Predicted Class: {predicted_class}", prediction_scores.tolist()
iface = gr.Interface(
fn=get_prediction,
inputs=gr.Textbox(lines=4, placeholder="Type your text..."),
outputs=[gr.Textbox(label="Prediction"), gr.Dataframe(label="Scores")],
title="BERT Sequence Classification Demo",
description="This demo uses a BERT model hosted on Hugging Face to classify text sequences."
)
if __name__ == "__main__":
iface.launch()
|