MarkAdamsMSBA24 commited on
Commit
ab60db9
·
verified ·
1 Parent(s): b95412e

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -27
app.py DELETED
@@ -1,27 +0,0 @@
1
- import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
- import torch
4
-
5
- # Load the model and tokenizer
6
- tokenizer = AutoTokenizer.from_pretrained("MarkAdamsMSBA24/ADRv2024")
7
- model = AutoModelForSequenceClassification.from_pretrained("MarkAdamsMSBA24/ADRv2024")
8
-
9
- # Define the prediction function
10
- def get_prediction(text):
11
- inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True, padding=True)
12
- with torch.no_grad():
13
- outputs = model(**inputs)
14
- prediction_scores = outputs.logits
15
- predicted_class = torch.argmax(prediction_scores, dim=-1).item()
16
- return f"Predicted Class: {predicted_class}", prediction_scores.tolist()
17
-
18
- iface = gr.Interface(
19
- fn=get_prediction,
20
- inputs=gr.Textbox(lines=4, placeholder="Type your text..."),
21
- outputs=[gr.Textbox(label="Prediction"), gr.Dataframe(label="Scores")],
22
- title="BERT Sequence Classification Demo",
23
- description="This demo uses a BERT model hosted on Hugging Face to classify text sequences."
24
- )
25
-
26
- if __name__ == "__main__":
27
- iface.launch()