Aabbhishekk
commited on
Commit
•
bb742b2
1
Parent(s):
0349672
Upload 6 files
Browse files- chatAgentPdf/utils/__pycache__/ask_human.cpython-310.pyc +0 -0
- chatAgentPdf/utils/__pycache__/model_params.cpython-310.pyc +0 -0
- chatAgentPdf/utils/__pycache__/prompts.cpython-310.pyc +0 -0
- chatAgentPdf/utils/ask_human.py +32 -0
- chatAgentPdf/utils/model_params.py +51 -0
- chatAgentPdf/utils/prompts.py +49 -0
chatAgentPdf/utils/__pycache__/ask_human.cpython-310.pyc
ADDED
Binary file (1.18 kB). View file
|
|
chatAgentPdf/utils/__pycache__/model_params.cpython-310.pyc
ADDED
Binary file (1.01 kB). View file
|
|
chatAgentPdf/utils/__pycache__/prompts.cpython-310.pyc
ADDED
Binary file (1.42 kB). View file
|
|
chatAgentPdf/utils/ask_human.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Custom Langchain tool to ask human
|
3 |
+
"""
|
4 |
+
|
5 |
+
import time
|
6 |
+
|
7 |
+
import streamlit as st
|
8 |
+
from langchain.tools.base import BaseTool
|
9 |
+
|
10 |
+
|
11 |
+
class CustomAskHumanTool(BaseTool):
|
12 |
+
"""Tool that asks user for input."""
|
13 |
+
|
14 |
+
name = "AskHuman"
|
15 |
+
description = """Use this tool if you don't find a specific answer using KendraRetrievalTool.\
|
16 |
+
Ask the human to clarify the question or provide the missing information.\
|
17 |
+
The input should be a question for the human."""
|
18 |
+
|
19 |
+
def _run(
|
20 |
+
self,
|
21 |
+
query: str,
|
22 |
+
run_manager=None,
|
23 |
+
) -> str:
|
24 |
+
if "user_answer" not in st.session_state:
|
25 |
+
answer_container = st.chat_message("assistant", avatar="🦜")
|
26 |
+
answer_container.write(query)
|
27 |
+
|
28 |
+
answer = st.text_input("Enter your answer", key="user_answer")
|
29 |
+
while answer == "":
|
30 |
+
time.sleep(1)
|
31 |
+
|
32 |
+
return st.session_state["user_answer"]
|
chatAgentPdf/utils/model_params.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Utilities for modeling
|
3 |
+
"""
|
4 |
+
|
5 |
+
|
6 |
+
def get_model_params(
|
7 |
+
model_id: str,
|
8 |
+
params: dict,
|
9 |
+
) -> dict:
|
10 |
+
"""
|
11 |
+
Set up a dictionary with model parameters named appropriately for Bedrock
|
12 |
+
|
13 |
+
Parameters
|
14 |
+
----------
|
15 |
+
model_id : str
|
16 |
+
Model name
|
17 |
+
params : dict
|
18 |
+
Inference parameters
|
19 |
+
|
20 |
+
Returns
|
21 |
+
-------
|
22 |
+
dict
|
23 |
+
_description_
|
24 |
+
"""
|
25 |
+
|
26 |
+
model_params = {}
|
27 |
+
|
28 |
+
# name parameters based on the model id
|
29 |
+
if model_id.startswith("amazon"):
|
30 |
+
model_params = {
|
31 |
+
"maxTokenCount": params["answer_length"],
|
32 |
+
"stopSequences": params["stop_words"],
|
33 |
+
"temperature": params["temperature"],
|
34 |
+
"topP": params["top_p"],
|
35 |
+
}
|
36 |
+
elif model_id.startswith("anthropic"):
|
37 |
+
model_params = {
|
38 |
+
"max_tokens_to_sample": params["answer_length"],
|
39 |
+
"stop_sequences": params["stop_words"],
|
40 |
+
"temperature": params["temperature"],
|
41 |
+
"top_p": params["top_p"],
|
42 |
+
}
|
43 |
+
elif model_id.startswith("ai21"):
|
44 |
+
model_params = {
|
45 |
+
"maxTokens": params["answer_length"],
|
46 |
+
"stopSequences": params["stop_words"],
|
47 |
+
"temperature": params["temperature"],
|
48 |
+
"topP": params["top_p"],
|
49 |
+
}
|
50 |
+
|
51 |
+
return model_params
|
chatAgentPdf/utils/prompts.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Custom Langchain prompt templates
|
3 |
+
"""
|
4 |
+
|
5 |
+
from langchain.prompts import PromptTemplate
|
6 |
+
|
7 |
+
|
8 |
+
def create_qa_prompt() -> PromptTemplate:
|
9 |
+
"""
|
10 |
+
Prompt for retrieval QA chain
|
11 |
+
"""
|
12 |
+
|
13 |
+
template = """\n\nHuman: Use the following pieces of context to answer the question at the end.
|
14 |
+
|
15 |
+
{context}
|
16 |
+
|
17 |
+
Question: {question}
|
18 |
+
|
19 |
+
\n\nAssistant:
|
20 |
+
Answer:"""
|
21 |
+
|
22 |
+
return PromptTemplate(template=template, input_variables=["context", "question"])
|
23 |
+
|
24 |
+
|
25 |
+
def create_agent_prompt() -> PromptTemplate:
|
26 |
+
"""
|
27 |
+
Prompt for the agent
|
28 |
+
"""
|
29 |
+
|
30 |
+
prefix = """\n\nHuman: Answer the following questions as best you can. You have access to the following tools:"""
|
31 |
+
|
32 |
+
format_instructions = """Use the following format:
|
33 |
+
|
34 |
+
Question: the input question you must answer
|
35 |
+
Thought: you should always think about what to do
|
36 |
+
Action: the action to take, should be one of [{tool_names}]
|
37 |
+
Action Input: the input to the action
|
38 |
+
Observation: the result of the action
|
39 |
+
... (this Thought/Action/Action Input/Observation can repeat N times)
|
40 |
+
Thought: I now know the final answer
|
41 |
+
Final Answer: the final answer to the original input question"""
|
42 |
+
|
43 |
+
suffix = """Begin!
|
44 |
+
Question: {input}
|
45 |
+
\n\nAssistant:
|
46 |
+
Thought: {agent_scratchpad}
|
47 |
+
"""
|
48 |
+
|
49 |
+
return prefix, format_instructions, suffix
|