Spaces:
Sleeping
Sleeping
File size: 2,327 Bytes
f84e083 caa64e7 f84e083 215f4a9 f84e083 215f4a9 f84e083 215f4a9 f84e083 215f4a9 f84e083 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
import json # Make sure to import json
app = FastAPI()
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.0
max_new_tokens: int = 1048
top_p: float = 0.15
repetition_penalty: float = 1.0
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(item: Item):
temperature = float(item.temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(item.top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=item.max_new_tokens,
top_p=top_p,
repetition_penalty=item.repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
# Initialize a variable to track whether this is the last item
is_last = False
# Since we're yielding JSON, each chunk must be a complete JSON object.
# We'll iterate over the stream and yield each response as a JSON string.
for i, response in enumerate(stream):
# Check if this is the last item by attempting to peek ahead
is_last = True # Assume it's the last unless proven otherwise in the next iteration
# Construct the chunk of data to include the text and completion status
chunk_data = {
"text": response.token.text,
"complete": is_last
}
# Yield this chunk as a JSON-encoded string followed by a newline to separate chunks
yield json.dumps(chunk_data) + "\n"
@app.post("/generate/")
async def generate_text(item: Item):
# Note the change to media_type to indicate we're streaming JSON
return StreamingResponse(generate(item), media_type="application/x-ndjson")
|