PacmanAI-2 / main.py
Marroco93's picture
no message
d0435f3
raw
history blame
3.77 kB
import re
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
from typing import Generator
import json # Asegúrate de que esta línea esté al principio del archivo
import nltk
import os
import google.protobuf # This line should execute without errors if protobuf is installed correctly
import sentencepiece
from transformers import pipeline, AutoTokenizer,AutoModelForSeq2SeqLM
import spacy
nltk.data.path.append(os.getenv('NLTK_DATA'))
app = FastAPI()
# Initialize the InferenceClient with your model
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.8
max_new_tokens: int = 9000
top_p: float = 0.15
repetition_penalty: float = 1.0
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate_stream(item: Item) -> Generator[bytes, None, None]:
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
generate_kwargs = {
"temperature": item.temperature,
"max_new_tokens": item.max_new_tokens,
"top_p": item.top_p,
"repetition_penalty": item.repetition_penalty,
"do_sample": True,
"seed": 42, # Adjust or omit the seed as needed
}
# Stream the response from the InferenceClient
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
# This assumes 'details=True' gives you a structure where you can access the text like this
chunk = {
"text": response.token.text,
"complete": response.generated_text is not None # Adjust based on how you detect completion
}
yield json.dumps(chunk).encode("utf-8") + b"\n"
@app.post("/generate/")
async def generate_text(item: Item):
# Stream response back to the client
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
# Load spaCy model
nlp = spacy.load("en_core_web_sm")
class TextRequest(BaseModel):
text: str
def preprocess_text(text: str) -> str:
# Normalize whitespace and strip punctuation
text = re.sub(r'\s+', ' ', text.strip())
text = re.sub(r'[^\w\s]', '', text)
return text
def reduce_tokens(text: str):
# Process the text with spaCy
doc = nlp(text)
# Select sentences that might be more important - this is a simple heuristic
important_sentences = []
for sent in doc.sents:
if any(tok.dep_ == 'ROOT' for tok in sent):
important_sentences.append(sent.text)
# Join selected sentences to form the reduced text
reduced_text = ' '.join(important_sentences)
# Tokenize the reduced text to count the tokens
reduced_doc = nlp(reduced_text) # Ensure this line is correctly aligned
token_count = len(reduced_doc)
return reduced_text, token_count
@app.post("/summarize")
async def summarize(request: TextRequest):
try:
processed_text = preprocess_text(request.text)
reduced_text, token_count = reduce_tokens(processed_text)
return {
"reduced_text": reduced_text,
"token_count": token_count
}
except Exception as e:
print(f"Error during token reduction: {e}")
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)