PacmanAI-2 / main.py
Marroco93's picture
no message
fe81f5c
raw
history blame
7.42 kB
import re
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
from typing import Generator
import json # Asegúrate de que esta línea esté al principio del archivo
import nltk
import os
import google.protobuf # This line should execute without errors if protobuf is installed correctly
import sentencepiece
from transformers import pipeline, AutoTokenizer,AutoModelForSeq2SeqLM
import spacy
nltk.data.path.append(os.getenv('NLTK_DATA'))
app = FastAPI()
# Initialize the InferenceClient with your model
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.8
max_new_tokens: int = 4000
top_p: float = 0.15
repetition_penalty: float = 1.0
def format_prompt(current_prompt, history):
formatted_history = "<s>"
for entry in history:
if entry["role"] == "user":
formatted_history += f"[USER] {entry['content']} [/USER]"
elif entry["role"] == "assistant":
formatted_history += f"[ASSISTANT] {entry['content']} [/ASSISTANT]"
formatted_history += f"[USER] {current_prompt} [/USER]</s>"
return formatted_history
def generate_stream(item: Item) -> Generator[bytes, None, None]:
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
# Estimate token count for the formatted_prompt
input_token_count = len(nltk.word_tokenize(formatted_prompt)) # NLTK tokenization
# Ensure total token count doesn't exceed the maximum limit
max_tokens_allowed = 32768
max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count))
generate_kwargs = {
"temperature": item.temperature,
"max_new_tokens": max_new_tokens_adjusted,
"top_p": item.top_p,
"repetition_penalty": item.repetition_penalty,
"do_sample": True,
"seed": 42,
}
# Stream the response from the InferenceClient
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
# This assumes 'details=True' gives you a structure where you can access the text like this
chunk = {
"text": response.token.text,
"complete": response.generated_text is not None # Adjust based on how you detect completion
}
yield json.dumps(chunk).encode("utf-8") + b"\n"
class SummarizeRequest(BaseModel):
text: str
@app.post("/generate/")
async def generate_text(item: Item):
# Stream response back to the client
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
# Load spaCy model
nlp = spacy.load("en_core_web_sm")
class TextRequest(BaseModel):
text: str
def preprocess_text(text: str) -> str:
# Normalize whitespace and strip punctuation
text = re.sub(r'\s+', ' ', text.strip())
text = re.sub(r'[^\w\s]', '', text)
return text
def reduce_tokens(text: str):
# Process the text with spaCy
doc = nlp(text)
# Select sentences that might be more important - this is a simple heuristic
important_sentences = []
for sent in doc.sents:
if any(tok.dep_ == 'ROOT' for tok in sent):
important_sentences.append(sent.text)
# Join selected sentences to form the reduced text
reduced_text = ' '.join(important_sentences)
# Tokenize the reduced text to count the tokens
reduced_doc = nlp(reduced_text) # Ensure this line is correctly aligned
token_count = len(reduced_doc)
return reduced_text, token_count
def segment_text(text: str, max_tokens=500): # Setting a conservative limit below 512
doc = nlp(text)
segments = []
current_segment = []
current_length = 0
for sent in doc.sents:
sentence = sent.text.strip()
sentence_length = len(sentence.split()) # Counting words for simplicity
if sentence_length > max_tokens:
# Split long sentences into smaller chunks if a single sentence exceeds max_tokens
words = sentence.split()
while words:
part = ' '.join(words[:max_tokens])
segments.append(part)
words = words[max_tokens:]
elif current_length + sentence_length > max_tokens:
segments.append(' '.join(current_segment))
current_segment = [sentence]
current_length = sentence_length
else:
current_segment.append(sentence)
current_length += sentence_length
if current_segment: # Add the last segment
segments.append(' '.join(current_segment))
return segments
classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
def classify_segments(segments):
classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
classified_segments = []
for segment in segments:
try:
if len(segment.split()) <= 512: # Double-check to avoid errors
result = classifier(segment)
classified_segments.append(result)
else:
classified_segments.append({"error": f"Segment too long: {len(segment.split())} tokens"})
except Exception as e:
classified_segments.append({"error": str(e)})
return classified_segments
@app.post("/process_document")
async def process_document(request: TextRequest):
try:
processed_text = preprocess_text(request.text)
segments = segment_text(processed_text)
classified_segments = classify_segments(segments)
return {
"classified_segments": classified_segments
}
except Exception as e:
print(f"Error during document processing: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/summarize")
async def summarize(request: TextRequest):
try:
# Preprocess and segment the text
processed_text = preprocess_text(request.text)
segments = segment_text(processed_text)
# Classify each segment safely
classified_segments = []
for segment in segments:
try:
result = classifier(segment)
classified_segments.append(result)
except Exception as e:
print(f"Error classifying segment: {e}")
classified_segments.append({"error": str(e)})
# Optional: Reduce tokens or summarize
reduced_texts = []
for segment in segments:
try:
reduced_text, token_count = reduce_tokens(segment)
reduced_texts.append((reduced_text, token_count))
except Exception as e:
print(f"Error during token reduction: {e}")
reduced_texts.append(("Error", 0))
return {
"classified_segments": classified_segments,
"reduced_texts": reduced_texts
}
except Exception as e:
print(f"Error during token reduction: {e}")
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)