Spaces:
Sleeping
Sleeping
no message
Browse files
copy.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from fastapi.responses import StreamingResponse
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from huggingface_hub import InferenceClient
|
5 |
+
import uvicorn
|
6 |
+
from typing import Generator
|
7 |
+
import json # Asegúrate de que esta línea esté al principio del archivo
|
8 |
+
import nltk
|
9 |
+
import os
|
10 |
+
|
11 |
+
|
12 |
+
nltk.data.path.append(os.getenv('NLTK_DATA'))
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
# Initialize the InferenceClient with your model
|
17 |
+
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
|
18 |
+
|
19 |
+
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
20 |
+
|
21 |
+
|
22 |
+
class Item(BaseModel):
|
23 |
+
prompt: str
|
24 |
+
history: list
|
25 |
+
system_prompt: str
|
26 |
+
temperature: float = 0.8
|
27 |
+
max_new_tokens: int = 12000
|
28 |
+
top_p: float = 0.15
|
29 |
+
repetition_penalty: float = 1.0
|
30 |
+
|
31 |
+
def format_prompt(current_prompt, history):
|
32 |
+
formatted_history = "<s>"
|
33 |
+
for entry in history:
|
34 |
+
if entry["role"] == "user":
|
35 |
+
formatted_history += f"[USER] {entry['content']} [/USER]"
|
36 |
+
elif entry["role"] == "assistant":
|
37 |
+
formatted_history += f"[ASSISTANT] {entry['content']} [/ASSISTANT]"
|
38 |
+
formatted_history += f"[USER] {current_prompt} [/USER]</s>"
|
39 |
+
return formatted_history
|
40 |
+
|
41 |
+
|
42 |
+
def generate_stream(item: Item) -> Generator[bytes, None, None]:
|
43 |
+
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
|
44 |
+
# Estimate token count for the formatted_prompt
|
45 |
+
input_token_count = len(nltk.word_tokenize(formatted_prompt)) # NLTK tokenization
|
46 |
+
|
47 |
+
# Ensure total token count doesn't exceed the maximum limit
|
48 |
+
max_tokens_allowed = 32768
|
49 |
+
max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count))
|
50 |
+
|
51 |
+
generate_kwargs = {
|
52 |
+
"temperature": item.temperature,
|
53 |
+
"max_new_tokens": max_new_tokens_adjusted,
|
54 |
+
"top_p": item.top_p,
|
55 |
+
"repetition_penalty": item.repetition_penalty,
|
56 |
+
"do_sample": True,
|
57 |
+
"seed": 42,
|
58 |
+
}
|
59 |
+
|
60 |
+
# Stream the response from the InferenceClient
|
61 |
+
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
|
62 |
+
# This assumes 'details=True' gives you a structure where you can access the text like this
|
63 |
+
chunk = {
|
64 |
+
"text": response.token.text,
|
65 |
+
"complete": response.generated_text is not None # Adjust based on how you detect completion
|
66 |
+
}
|
67 |
+
yield json.dumps(chunk).encode("utf-8") + b"\n"
|
68 |
+
|
69 |
+
@app.post("/generate/")
|
70 |
+
async def generate_text(item: Item):
|
71 |
+
# Stream response back to the client
|
72 |
+
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
|
73 |
+
|
74 |
+
if __name__ == "__main__":
|
75 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|