Spaces:
Sleeping
Sleeping
no message
Browse files
main.py
CHANGED
@@ -11,8 +11,9 @@ import nltk
|
|
11 |
import os
|
12 |
import google.protobuf # This line should execute without errors if protobuf is installed correctly
|
13 |
import sentencepiece
|
14 |
-
from transformers import pipeline, AutoTokenizer,AutoModelForSequenceClassification
|
15 |
import spacy
|
|
|
16 |
|
17 |
|
18 |
nltk.data.path.append(os.getenv('NLTK_DATA'))
|
@@ -80,7 +81,6 @@ async def generate_text(item: Item):
|
|
80 |
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
|
81 |
|
82 |
|
83 |
-
|
84 |
# Load spaCy model
|
85 |
nlp = spacy.load("en_core_web_sm")
|
86 |
|
@@ -93,152 +93,96 @@ def preprocess_text(text: str) -> str:
|
|
93 |
text = re.sub(r'[^\w\s]', '', text)
|
94 |
return text
|
95 |
|
96 |
-
def
|
97 |
-
#
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
for sent in doc.sents:
|
102 |
-
if any(tok.dep_ == 'ROOT' for tok in sent):
|
103 |
-
important_sentences.append(sent.text)
|
104 |
-
# Join selected sentences to form the reduced text
|
105 |
-
reduced_text = ' '.join(important_sentences)
|
106 |
-
# Tokenize the reduced text to count the tokens
|
107 |
-
reduced_doc = nlp(reduced_text) # Ensure this line is correctly aligned
|
108 |
-
token_count = len(reduced_doc)
|
109 |
-
return reduced_text, token_count
|
110 |
-
|
111 |
-
def segment_text(text: str, max_tokens=500): # Setting a conservative limit below 512
|
112 |
-
doc = nlp(text)
|
113 |
-
segments = []
|
114 |
-
current_segment = []
|
115 |
-
current_length = 0
|
116 |
-
|
117 |
-
for sent in doc.sents:
|
118 |
-
sentence = sent.text.strip()
|
119 |
-
sentence_length = len(sentence.split()) # Counting words for simplicity
|
120 |
-
|
121 |
-
if sentence_length > max_tokens:
|
122 |
-
# Split long sentences into smaller chunks if a single sentence exceeds max_tokens
|
123 |
-
words = sentence.split()
|
124 |
-
while words:
|
125 |
-
part = ' '.join(words[:max_tokens])
|
126 |
-
segments.append(part)
|
127 |
-
words = words[max_tokens:]
|
128 |
-
elif current_length + sentence_length > max_tokens:
|
129 |
-
segments.append(' '.join(current_segment))
|
130 |
-
current_segment = [sentence]
|
131 |
-
current_length = sentence_length
|
132 |
-
else:
|
133 |
-
current_segment.append(sentence)
|
134 |
-
current_length += sentence_length
|
135 |
-
|
136 |
-
if current_segment: # Add the last segment
|
137 |
-
segments.append(' '.join(current_segment))
|
138 |
-
|
139 |
-
return segments
|
140 |
-
|
141 |
-
|
142 |
-
# Load the tokenizer and model
|
143 |
-
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
144 |
-
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
|
145 |
-
|
146 |
-
# Set up the pipeline
|
147 |
-
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
148 |
-
|
149 |
-
def robust_segment_text(text: str, max_tokens=510):
|
150 |
-
doc = nlp(text)
|
151 |
-
segments = []
|
152 |
-
current_segment = []
|
153 |
-
current_tokens = []
|
154 |
-
|
155 |
-
for sent in doc.sents:
|
156 |
-
words = sent.text.strip().split()
|
157 |
-
sentence_tokens = tokenizer.encode(' '.join(words), add_special_tokens=False)
|
158 |
-
|
159 |
-
if len(current_tokens) + len(sentence_tokens) > max_tokens:
|
160 |
-
segments.append(tokenizer.decode(current_tokens))
|
161 |
-
current_segment = words
|
162 |
-
current_tokens = sentence_tokens
|
163 |
-
else:
|
164 |
-
current_segment.extend(words)
|
165 |
-
current_tokens.extend(sentence_tokens)
|
166 |
-
|
167 |
-
if current_tokens: # Add the last segment
|
168 |
-
segments.append(tokenizer.decode(current_tokens))
|
169 |
-
|
170 |
-
return segments
|
171 |
-
|
172 |
-
|
173 |
-
def classify_segments(segments):
|
174 |
-
labels = [
|
175 |
-
"Coverage Details", "Exclusions", "Premiums", "Claims Process",
|
176 |
-
"Policy Limits", "Legal and Regulatory Information", "Renewals and Cancellations",
|
177 |
-
"Discounts and Incentives", "Duties and Responsibilities", "Contact Information"
|
178 |
-
]
|
179 |
-
classified_segments = []
|
180 |
-
for segment in segments:
|
181 |
-
# Note: Adjust the input here based on how your model was trained
|
182 |
-
predictions = classifier(segment)
|
183 |
-
classified_segments.append(predictions)
|
184 |
-
return classified_segments
|
185 |
|
|
|
|
|
186 |
|
|
|
187 |
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
@app.post("/process_document")
|
193 |
async def process_document(request: TextRequest):
|
194 |
try:
|
195 |
-
processed_text = preprocess_text(request.text)
|
196 |
-
|
197 |
-
|
198 |
|
199 |
return {
|
200 |
-
"
|
|
|
201 |
}
|
202 |
except Exception as e:
|
203 |
print(f"Error during document processing: {e}")
|
204 |
raise HTTPException(status_code=500, detail=str(e))
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
}
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
|
243 |
-
if __name__ == "__main__":
|
244 |
-
|
|
|
11 |
import os
|
12 |
import google.protobuf # This line should execute without errors if protobuf is installed correctly
|
13 |
import sentencepiece
|
14 |
+
from transformers import pipeline, AutoTokenizer,AutoModelForSequenceClassification,AutoModel
|
15 |
import spacy
|
16 |
+
import numpy as np
|
17 |
|
18 |
|
19 |
nltk.data.path.append(os.getenv('NLTK_DATA'))
|
|
|
81 |
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
|
82 |
|
83 |
|
|
|
84 |
# Load spaCy model
|
85 |
nlp = spacy.load("en_core_web_sm")
|
86 |
|
|
|
93 |
text = re.sub(r'[^\w\s]', '', text)
|
94 |
return text
|
95 |
|
96 |
+
def embed_text(text: str) -> np.ndarray:
|
97 |
+
# Load the JinaAI/jina-embeddings-v2-base-en model
|
98 |
+
model_name = "JinaAI/jina-embeddings-v2-base-en"
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
100 |
+
model = AutoModel.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
inputs = tokenizer(text, return_tensors='pt')
|
103 |
+
embeddings = model(**inputs).pooler_output.numpy()
|
104 |
|
105 |
+
return embeddings
|
106 |
|
107 |
+
def semantic_matching(text, context):
|
108 |
+
text_embeddings = embed_text(text)
|
109 |
+
context_embeddings = [embed_text(ctx) for ctx in context]
|
110 |
|
111 |
+
# Calculate cosine similarity between text and context embeddings
|
112 |
+
similarities = np.dot(text_embeddings, context_embeddings.T)
|
113 |
+
|
114 |
+
# Find the most similar sentence in the context
|
115 |
+
most_similar_idx = np.argmax(similarities)
|
116 |
+
|
117 |
+
return context[most_similar_idx]
|
118 |
+
|
119 |
+
def handle_endpoint(text):
|
120 |
+
# Define your large context here
|
121 |
+
context = [
|
122 |
+
"This is a sample context sentence 1.",
|
123 |
+
"Another context sentence to provide additional information.",
|
124 |
+
"This context sentence introduces a new topic.",
|
125 |
+
"Some additional details about the new topic are provided here.",
|
126 |
+
"Context sentences can be added or removed as needed.",
|
127 |
+
"The context should cover a range of topics and provide relevant information.",
|
128 |
+
"Make sure the context is diverse and representative of the domain.",
|
129 |
+
]
|
130 |
+
|
131 |
+
# Perform semantic matching to retrieve the most relevant portion of the context
|
132 |
+
relevant_context = semantic_matching(text, context)
|
133 |
+
|
134 |
+
return relevant_context
|
135 |
|
136 |
@app.post("/process_document")
|
137 |
async def process_document(request: TextRequest):
|
138 |
try:
|
139 |
+
processed_text = preprocess_text(request.text)
|
140 |
+
embedded_text = embed_text(processed_text)
|
141 |
+
relevant_context = handle_endpoint(processed_text)
|
142 |
|
143 |
return {
|
144 |
+
"embedded_text": embedded_text.tolist(),
|
145 |
+
"relevant_context": relevant_context
|
146 |
}
|
147 |
except Exception as e:
|
148 |
print(f"Error during document processing: {e}")
|
149 |
raise HTTPException(status_code=500, detail=str(e))
|
150 |
|
151 |
+
# @app.post("/summarize")
|
152 |
+
# async def summarize(request: TextRequest):
|
153 |
+
# try:
|
154 |
+
# # Preprocess and segment the text
|
155 |
+
# processed_text = preprocess_text(request.text)
|
156 |
+
# segments = segment_text(processed_text)
|
157 |
+
|
158 |
+
# # Classify each segment safely
|
159 |
+
# classified_segments = []
|
160 |
+
# for segment in segments:
|
161 |
+
# try:
|
162 |
+
# result = classifier(segment)
|
163 |
+
# classified_segments.append(result)
|
164 |
+
# except Exception as e:
|
165 |
+
# print(f"Error classifying segment: {e}")
|
166 |
+
# classified_segments.append({"error": str(e)})
|
167 |
+
|
168 |
+
# # Optional: Reduce tokens or summarize
|
169 |
+
# reduced_texts = []
|
170 |
+
# for segment in segments:
|
171 |
+
# try:
|
172 |
+
# reduced_text, token_count = reduce_tokens(segment)
|
173 |
+
# reduced_texts.append((reduced_text, token_count))
|
174 |
+
# except Exception as e:
|
175 |
+
# print(f"Error during token reduction: {e}")
|
176 |
+
# reduced_texts.append(("Error", 0))
|
177 |
+
|
178 |
+
# return {
|
179 |
+
# "classified_segments": classified_segments,
|
180 |
+
# "reduced_texts": reduced_texts
|
181 |
+
# }
|
|
|
182 |
|
183 |
+
# except Exception as e:
|
184 |
+
# print(f"Error during token reduction: {e}")
|
185 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
186 |
|
187 |
+
# if __name__ == "__main__":
|
188 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000)
|