Spaces:
Sleeping
Sleeping
no message
Browse files
main.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from fastapi.responses import StreamingResponse
|
3 |
from fastapi.responses import JSONResponse
|
@@ -101,50 +102,27 @@ tokenizer = AutoTokenizer.from_pretrained("nsi319/legal-pegasus")
|
|
101 |
model = AutoModelForSeq2SeqLM.from_pretrained("nsi319/legal-pegasus")
|
102 |
|
103 |
|
104 |
-
class
|
105 |
text: str
|
106 |
|
107 |
-
def chunk_text(text, max_length=1024):
|
108 |
-
"""Split the text into manageable parts for the model to handle."""
|
109 |
-
words = text.split()
|
110 |
-
current_chunk = ""
|
111 |
-
chunks = []
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
def summarize_legal_text(text):
|
123 |
-
"""Generate summaries for each chunk and combine them."""
|
124 |
-
chunks = chunk_text(text, max_length=900) # A bit less than 1024 to be safe
|
125 |
-
all_summaries = []
|
126 |
-
|
127 |
-
for chunk in chunks:
|
128 |
-
inputs = tokenizer.encode(chunk, return_tensors='pt', max_length=1024, truncation=True)
|
129 |
-
summary_ids = model.generate(
|
130 |
-
inputs,
|
131 |
-
num_beams=5,
|
132 |
-
no_repeat_ngram_size=3,
|
133 |
-
length_penalty=1.0,
|
134 |
-
min_length=150,
|
135 |
-
max_length=300, # You can adjust this based on your needs
|
136 |
-
early_stopping=True
|
137 |
-
)
|
138 |
-
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
139 |
-
all_summaries.append(summary)
|
140 |
-
|
141 |
-
return " ".join(all_summaries)
|
142 |
|
143 |
@app.post("/summarize")
|
144 |
-
async def
|
145 |
try:
|
146 |
-
|
147 |
-
|
|
|
|
|
148 |
except Exception as e:
|
149 |
print(f"Error during summarization: {e}")
|
150 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
+
import re
|
2 |
from fastapi import FastAPI, HTTPException
|
3 |
from fastapi.responses import StreamingResponse
|
4 |
from fastapi.responses import JSONResponse
|
|
|
102 |
model = AutoModelForSeq2SeqLM.from_pretrained("nsi319/legal-pegasus")
|
103 |
|
104 |
|
105 |
+
class TextRequest(BaseModel):
|
106 |
text: str
|
107 |
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
def preprocess_text(text: str) -> str:
|
110 |
+
# Normalize whitespace
|
111 |
+
text = re.sub(r'\s+', ' ', text.strip())
|
112 |
+
|
113 |
+
# Optional: Add additional preprocessing steps
|
114 |
+
# E.g., handling or stripping special characters, lowercasing, etc.
|
115 |
+
text = re.sub(r'[^\w\s]', '', text) # Remove punctuation for simplicity
|
116 |
+
|
117 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
@app.post("/summarize")
|
120 |
+
async def summarize(request: TextRequest):
|
121 |
try:
|
122 |
+
processed_text = preprocess_text(request.text)
|
123 |
+
|
124 |
+
return {"summary": processed_text}
|
125 |
+
|
126 |
except Exception as e:
|
127 |
print(f"Error during summarization: {e}")
|
128 |
raise HTTPException(status_code=500, detail=str(e))
|