Spaces:
Sleeping
Sleeping
main.py
CHANGED
@@ -3,11 +3,11 @@ from fastapi.responses import StreamingResponse
|
|
3 |
from pydantic import BaseModel
|
4 |
from huggingface_hub import InferenceClient
|
5 |
import uvicorn
|
6 |
-
|
7 |
-
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
11 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
12 |
|
13 |
class Item(BaseModel):
|
@@ -15,7 +15,7 @@ class Item(BaseModel):
|
|
15 |
history: list
|
16 |
system_prompt: str
|
17 |
temperature: float = 0.0
|
18 |
-
max_new_tokens: int =
|
19 |
top_p: float = 0.15
|
20 |
repetition_penalty: float = 1.0
|
21 |
|
@@ -27,40 +27,30 @@ def format_prompt(message, history):
|
|
27 |
prompt += f"[INST] {message} [/INST]"
|
28 |
return prompt
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
def generate(item: Item):
|
33 |
-
temperature = float(item.temperature)
|
34 |
-
if temperature < 1e-2:
|
35 |
-
temperature = 1e-2
|
36 |
-
top_p = float(item.top_p)
|
37 |
-
|
38 |
-
generate_kwargs = dict(
|
39 |
-
temperature=temperature,
|
40 |
-
max_new_tokens=item.max_new_tokens,
|
41 |
-
top_p=top_p,
|
42 |
-
repetition_penalty=item.repetition_penalty,
|
43 |
-
do_sample=True,
|
44 |
-
seed=42,
|
45 |
-
)
|
46 |
-
|
47 |
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
chunk = {
|
55 |
"text": response.token.text,
|
56 |
-
"complete":
|
57 |
}
|
58 |
-
# Yield the JSON-encoded string with a newline to separate chunks
|
59 |
yield json.dumps(chunk).encode("utf-8") + b"\n"
|
60 |
|
61 |
@app.post("/generate/")
|
62 |
async def generate_text(item: Item):
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
|
|
|
|
|
|
3 |
from pydantic import BaseModel
|
4 |
from huggingface_hub import InferenceClient
|
5 |
import uvicorn
|
6 |
+
from typing import Generator
|
|
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Initialize the InferenceClient with your model
|
11 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
12 |
|
13 |
class Item(BaseModel):
|
|
|
15 |
history: list
|
16 |
system_prompt: str
|
17 |
temperature: float = 0.0
|
18 |
+
max_new_tokens: int = 9000
|
19 |
top_p: float = 0.15
|
20 |
repetition_penalty: float = 1.0
|
21 |
|
|
|
27 |
prompt += f"[INST] {message} [/INST]"
|
28 |
return prompt
|
29 |
|
30 |
+
def generate_stream(item: Item) -> Generator[bytes, None, None]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
|
32 |
+
generate_kwargs = {
|
33 |
+
"temperature": item.temperature,
|
34 |
+
"max_new_tokens": item.max_new_tokens,
|
35 |
+
"top_p": item.top_p,
|
36 |
+
"repetition_penalty": item.repetition_penalty,
|
37 |
+
"do_sample": True,
|
38 |
+
"seed": 42, # Adjust or omit the seed as needed
|
39 |
+
}
|
40 |
+
|
41 |
+
# Stream the response from the InferenceClient
|
42 |
+
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
|
43 |
+
# This assumes 'details=True' gives you a structure where you can access the text like this
|
44 |
chunk = {
|
45 |
"text": response.token.text,
|
46 |
+
"complete": response.generated_text is not None # Adjust based on how you detect completion
|
47 |
}
|
|
|
48 |
yield json.dumps(chunk).encode("utf-8") + b"\n"
|
49 |
|
50 |
@app.post("/generate/")
|
51 |
async def generate_text(item: Item):
|
52 |
+
# Stream response back to the client
|
53 |
+
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
|
|
|
54 |
|
55 |
+
if __name__ == "__main__":
|
56 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|