Spaces:
Sleeping
Sleeping
llama2
Browse files- main.py +15 -10
- requirements.txt +2 -1
main.py
CHANGED
@@ -5,11 +5,13 @@ from huggingface_hub import InferenceClient
|
|
5 |
import uvicorn
|
6 |
from typing import Generator
|
7 |
import json # Asegúrate de que esta línea esté al principio del archivo
|
|
|
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
# Initialize the InferenceClient with your model
|
12 |
-
client = InferenceClient("
|
13 |
|
14 |
class Item(BaseModel):
|
15 |
prompt: str
|
@@ -21,12 +23,16 @@ class Item(BaseModel):
|
|
21 |
repetition_penalty: float = 1.0
|
22 |
|
23 |
def format_prompt(message, history):
|
24 |
-
|
|
|
25 |
for user_prompt, bot_response in history:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
def generate_stream(item: Item) -> Generator[bytes, None, None]:
|
32 |
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
|
@@ -41,17 +47,16 @@ def generate_stream(item: Item) -> Generator[bytes, None, None]:
|
|
41 |
|
42 |
# Stream the response from the InferenceClient
|
43 |
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
|
44 |
-
#
|
45 |
chunk = {
|
46 |
"text": response.token.text,
|
47 |
-
"complete": response.generated_text is not None
|
48 |
}
|
49 |
yield json.dumps(chunk).encode("utf-8") + b"\n"
|
50 |
|
51 |
@app.post("/generate/")
|
52 |
async def generate_text(item: Item):
|
53 |
-
# Stream response back to the client
|
54 |
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
|
55 |
|
56 |
if __name__ == "__main__":
|
57 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
5 |
import uvicorn
|
6 |
from typing import Generator
|
7 |
import json # Asegúrate de que esta línea esté al principio del archivo
|
8 |
+
import torch
|
9 |
+
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
# Initialize the InferenceClient with your model
|
14 |
+
client = InferenceClient("meta-llama/Llama-2-7b-chat")
|
15 |
|
16 |
class Item(BaseModel):
|
17 |
prompt: str
|
|
|
23 |
repetition_penalty: float = 1.0
|
24 |
|
25 |
def format_prompt(message, history):
|
26 |
+
# Simple structure: alternating lines of dialogue, no special tokens unless specified by the model documentation
|
27 |
+
conversation = ""
|
28 |
for user_prompt, bot_response in history:
|
29 |
+
conversation += f"User: {user_prompt}\nBot: {bot_response}\n"
|
30 |
+
conversation += f"User: {message}"
|
31 |
+
return conversation
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
# No changes needed in the format_prompt function unless the new model requires different prompt formatting
|
36 |
|
37 |
def generate_stream(item: Item) -> Generator[bytes, None, None]:
|
38 |
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
|
|
|
47 |
|
48 |
# Stream the response from the InferenceClient
|
49 |
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
|
50 |
+
# Check if the 'details' flag and response structure are the same for the new model
|
51 |
chunk = {
|
52 |
"text": response.token.text,
|
53 |
+
"complete": response.generated_text is not None
|
54 |
}
|
55 |
yield json.dumps(chunk).encode("utf-8") + b"\n"
|
56 |
|
57 |
@app.post("/generate/")
|
58 |
async def generate_text(item: Item):
|
|
|
59 |
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
|
60 |
|
61 |
if __name__ == "__main__":
|
62 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
fastapi
|
2 |
uvicorn
|
3 |
huggingface_hub
|
4 |
-
pydantic
|
|
|
|
1 |
fastapi
|
2 |
uvicorn
|
3 |
huggingface_hub
|
4 |
+
pydantic
|
5 |
+
torch==2.0.0
|